1,500 research outputs found

    Parsing Speech: A Neural Approach to Integrating Lexical and Acoustic-Prosodic Information

    Full text link
    In conversational speech, the acoustic signal provides cues that help listeners disambiguate difficult parses. For automatically parsing spoken utterances, we introduce a model that integrates transcribed text and acoustic-prosodic features using a convolutional neural network over energy and pitch trajectories coupled with an attention-based recurrent neural network that accepts text and prosodic features. We find that different types of acoustic-prosodic features are individually helpful, and together give statistically significant improvements in parse and disfluency detection F1 scores over a strong text-only baseline. For this study with known sentence boundaries, error analyses show that the main benefit of acoustic-prosodic features is in sentences with disfluencies, attachment decisions are most improved, and transcription errors obscure gains from prosody.Comment: Accepted in NAACL HLT 201

    Unsupervised syntactic chunking with acoustic cues: Computational models for prosodic bootstrapping

    Get PDF
    Learning to group words into phrases without supervision is a hard task for NLP systems, but infants routinely accomplish it. We hypothesize that infants use acoustic cues to prosody, which NLP systems typically ignore. To evaluate the utility of prosodic information for phrase discovery, we present an HMM-based unsupervised chunker that learns from only transcribed words and raw acoustic correlates to prosody. Unlike previous work on unsupervised parsing and chunking, we use neither gold standard part-of-speech tags nor punctuation in the input. Evaluated on the Switchboard corpus, our model outperforms several baselines that exploit either lexical or prosodic information alone, and, despite producing a flat structure, performs competitively with a state-of-the-art unsupervised lexicalized parser, with a substantial advantage in precision. Our results support the hypothesis that acoustic-prosodic cues provide useful evidence about syntactic phrases for language-learning infants.10 page(s

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed
    corecore