396 research outputs found

    Design of a Mobile Underwater Charging System

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are extremely capable vehicles for numerous ocean related missions. AUVs are energy limited, resulting in short mission endurance on the scale of hours to days. Underwater Gliders (UGs) are able to operate on the order of months to years by using nontraditional propulsion methods. UGs, however, are unable to perform missions requiring high speed or direct forward motion due to the nature of their buoyancy driven motion. This work reviews the current state of the art in recharging AUVs and offers an underwater recharging network concept at a significantly reduced cost to traditional methods. The solution includes the design of a UG capable of serving as charge carrying agent that couples with and charges AUVs autonomously. The vehicle design is built on the work done previously at the Nonlinear and Autonomous Systems Lab on the development of ROUGHIE (Research Oriented Underwater Glider for Hands-on Investigative Engineering). The ROUGHIE2 design is a rethinking of the original ROUGHIE capabilities to serve as a mobile charger by increasing depth rating, endurance, and payload capacity. The recharging concept presented will be easy to adapt to many different AUVs and UGs making this technology universal to small AUVs

    Autonomous Underwater Gliders

    Get PDF

    Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008Inspired by the swimming abilities of marine animals, this thesis presents "Finnegan the RoboTurtle", an autonomous underwater vehicle (AUV) powered entirely by four flapping foils. Biomimetic actuation is shown to produce dramatic improvements in AUV maneuvering at cruising speeds, while simultaneously allowing for agility at low speeds. Using control algorithms linear in the modified Rodrigues parameters to support large angle maneuvers, the vehicle is successfully controlled in banked and twisting turns, exceeding the best reported AUV turning performance by more than a factor of two; a minimum turning radius of 0.7BL, and the ability to avoid walls detected> 1.8BL ahead, are found for cruising speeds of 0.75BL/S, with a maximum heading rate of 400 / S recorded. Observations of "Myrtle", a 250kg Green sea turtle (Chelonia mydas) at the New England Aquarium, are detailed; along with steady swimming, Myrtle is observed performing 1800 level turns and rapidly actuating pitch to control depth and speed. Limb kinematics for the level turning maneuver are replicated by Finnegan, and turning rates comparable to those of the turtle are achieved. Foil kinematics which produce approximately sinusoidal nominal angle of attack trace are shown to improve turning performance by as much as 25%; the effect is achieved despite limited knowledge of the flow field. Finally, tests with a single foil are used to demonstrate that biomimetically inspired inline motion can allow oscillating foils utilizing a power/recovery style stroke to generate as much as 90% of the thrust from a power/power stroke style motion

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Cooperative Control of Multiple Biomimetic Robotic Fish

    Get PDF

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Development of Modular Bio-Inspired Autonomous Underwater Vehicle for Close Subsea Asset Inspection

    Get PDF
    To reduce human risk and maintenance costs, Autonomous Underwater Vehicles (AUVs) are involved in subsea inspections and measurements for a wide range of marine industries such as offshore wind farms and other underwater infrastructure. Most of these inspections may require levels of manoeuvrability similar to what can be achieved by tethered vehicles, called Remotely Operated Vehicles (ROVs). To extend AUV intervention time and perform closer inspection in constrained spaces, AUVs need to be more efficient and flexible by being able to undulate around physical constraints. A biomimetic fish-like AUV known as RoboFish has been designed to mimic propulsion techniques observed in nature to provide high thrust efficiency and agility to navigate its way autonomously around complex underwater structures. Building upon advances in acoustic communications, computer vision, electronics and autonomy technologies, RoboFish aims to provide a solution to such critical inspections. This paper introduces the first RoboFish prototype that comprises cost-effective 3D printed modules joined together with innovative magnetic coupling joints and a modular software framework. Initial testing shows that the preliminary working prototype is functional in terms of water-tightness, propulsion, body control and communication using acoustics, with visual localisation and mapping capability

    Dangerous Inspection & Versatile Exploration Robot (DIVER): Tracking, Monitoring and Assisting Human Divers in Commercial, Environmental and Military Applications

    Get PDF
    The Dangerous Inspection & Versatile Exploration Robot (DIVER) is an underwater remotely operated vehicle designed to assist, track and monitor professional scuba divers in commercial, research and military applications. Integration of custom and commercially available components allowed for hardware development of the ROV. Software development allowed for the integration of OpenTLD tracking algorithm and manual user controls for full autonomous or tele-operational missions. DIVER provides constant communication for the improvement of mission organization and professional diver safety
    corecore