483 research outputs found

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    TEDDI: Tamper Event Detection on Distributed Cyber-Physical Systems

    Get PDF
    Edge devices, or embedded devices installed along the periphery of a power grid SCADA network, pose a significant threat to the grid, as they give attackers a convenient entry point to access and cause damage to other essential equipment in substations and control centers. Grid defenders would like to protect these edge devices from being accessed and tampered with, but they are hindered by the grid defender\u27s dilemma; more specifically, the range and nature of tamper events faced by the grid (particularly distributed events), the prioritization of grid availability, the high costs of improper responses, and the resource constraints of both grid networks and the defenders that run them makes prior work in the tamper and intrusion protection fields infeasible to apply. In this thesis, we give a detailed description of the grid defender\u27s dilemma, and introduce TEDDI (Tamper Event Detection on Distributed Infrastructure), a distributed, sensor-based tamper protection system built to solve this dilemma. TEDDI\u27s distributed architecture and use of a factor graph fusion algorithm gives grid defenders the power to detect and differentiate between tamper events, and also gives defenders the flexibility to tailor specific responses for each event. We also propose the TEDDI Generation Tool, which allows us to capture the defender\u27s intuition about tamper events, and assists defenders in constructing a custom TEDDI system for their network. To evaluate TEDDI, we collected and constructed twelve different tamper scenarios, and show how TEDDI can detect all of these events and solve the grid defender\u27s dilemma. In our experiments, TEDDI demonstrated an event detection accuracy level of over 99% at both the information and decision point levels, and could process a 99-node factor graph in under 233 microseconds. We also analyzed the time and resources needed to use TEDDI, and show how it requires less up-front configuration effort than current tamper protection solutions

    A Framework for Cyber Vulnerability Assessments of InfiniBand Networks

    Get PDF
    InfiniBand is a popular Input/Output interconnect technology used in High Performance Computing clusters. It is employed in over a quarter of the world’s 500 fastest computer systems. Although it was created to provide extremely low network latency with a high Quality of Service, the cybersecurity aspects of InfiniBand have yet to be thoroughly investigated. The InfiniBand Architecture was designed as a data center technology, logically separated from the Internet, so defensive mechanisms such as packet encryption were not implemented. Cyber communities do not appear to have taken an interest in InfiniBand, but that is likely to change as attackers branch out from traditional computing devices. This thesis considers the security implications of InfiniBand features and constructs a framework for conducting Cyber Vulnerability Assessments. Several attack primitives are tested and analyzed. Finally, new cyber tools and security devices for InfiniBand are proposed, and changes to existing products are recommended

    Security of the Internet of Things: Vulnerabilities, Attacks and Countermeasures

    Get PDF
    Wireless Sensor Networks (WSNs) constitute one of the most promising third-millennium technologies and have wide range of applications in our surrounding environment. The reason behind the vast adoption of WSNs in various applications is that they have tremendously appealing features, e.g., low production cost, low installation cost, unattended network operation, autonomous and longtime operation. WSNs have started to merge with the Internet of Things (IoT) through the introduction of Internet access capability in sensor nodes and sensing ability in Internet-connected devices. Thereby, the IoT is providing access to huge amount of data, collected by the WSNs, over the Internet. Hence, the security of IoT should start with foremost securing WSNs ahead of the other components. However, owing to the absence of a physical line-of-defense, i.e., there is no dedicated infrastructure such as gateways to watch and observe the flowing information in the network, security of WSNs along with IoT is of a big concern to the scientific community. More specifically, for the application areas in which CIA (confidentiality, integrity, availability) has prime importance, WSNs and emerging IoT technology might constitute an open avenue for the attackers. Besides, recent integration and collaboration of WSNs with IoT will open new challenges and problems in terms of security. Hence, this would be a nightmare for the individuals using these systems as well as the security administrators who are managing those networks. Therefore, a detailed review of security attacks towards WSNs and IoT, along with the techniques for prevention, detection, and mitigation of those attacks are provided in this paper. In this text, attacks are categorized and treated into mainly two parts, most or all types of attacks towards WSNs and IoT are investigated under that umbrella: “Passive Attacks” and “Active Attacks”. Understanding these attacks and their associated defense mechanisms will help paving a secure path towards the proliferation and public acceptance of IoT technology

    SECURING CENTRALIZED SDN CONTROL WITH DISTRIBUTED BLOCKCHAIN TECHNOLOGY

    Get PDF
    Software Defined Networks (SDN) advocates segregation of network control logic, forwarding functions and management applications into different planes to achieve network programmability, automated and dynamic flow control in next generation networks. It promotes deployment of novel and augmented network management functions to have flexible, robust, scalable and cost-effective network deployments. All these features introduce new research challenges and require secure communication protocols among the segregated network planes. This manuscript focuses on the security issue of southbound interface which operates between the SDN control and data plane. We have highlighted the security threats associated with an unprotected southbound interface and the issues related with the existing TLS based security solution. A lightweight blockchain based decentralized security solution is proposed for southbound interface to secure the resources of logically centralized SDN controllers and distributed forwarding devices from opponents. The proposed mechanism can operate in multi-domain SDN deployment and can be used with wide range of network controllers and data plane devices. In addition to it, the proposed security solution is analyzed in terms of security features, communication and reauthentication overhead
    • …
    corecore