311 research outputs found

    An Enhanced Double-layered P2P System for the Reliability in Dynamic Mobile Environments

    Get PDF
    The double-layered peer-to-peer (P2P) systems were introduced to reduce the network traffic in MANET. The peers in the systems are classified into super peers and sub-peers. Super peers manage their neighboring sub-peers. The network communications in the systems are done mostly among super peers. In case when a pair of neighboring super peers is too far to communicate, one or two of their sub-peers bridges the super peers. However, the double-layered systems need to improve the reliability that guarantees communications among peers. In this paper, we propose a new double-layered P2P system in which super peers are selected based on their mobility. We also propose two reliability improvement schemes, the avoidance scheme and the role changing scheme. They are applied to the proposed system to enhance the reliability of the system. The proposed system is implemented in the dynamic mobile P2P environment where peers may join and leave the network dynamically and the number of peers varies. The various experiments are done with the Network Simulator-2 v2.33. The experimental results show that the proposed system with the two schemes improved the reliability over other double-layered systems in terms of the failure rate by up to 25 %, while increasing the network traffic marginally

    Effective bootstrapping of Peer-to Peer networks over Mobile Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) and Peer-to-Peer (P2P) networks are vigorous, revolutionary communication technologies in the 21st century. They lead the trend of decentralization. Decentralization will ultimately win clients over client/server model, because it gives ordinary network users more control, and stimulates their active participation. It is a determinant factor in shaping the future of networking. MANETs and P2P networks are very similar in nature. Both are dynamic, distributed. Both use multi-hop broadcast or multicast as major pattern of traffic. Both set up connection by self-organizing and maintain connection by self-healing. Embodying the slogan networking without networks, both abandoned traditional client/server model and disclaimed pre-existing infrastructure. However, their status quo levels of real world application are widely divergent. P2P networks are now accountable for about 50 ~ 70% internet traffic, while MANETs are still primarily in the laboratory. The interesting and confusing phenomenon has sparked considerable research effort to transplant successful approaches from P2P networks into MANETs. While most research in the synergy of P2P networks and MANETs focuses on routing, the network bootstrapping problem remains indispensable for any such transplantation to be realized. The most pivotal problems in bootstrapping are: (1) automatic configuration of nodes addresses and IDs, (2) topology discovery and transformation in different layers and name spaces. In this dissertation research, we have found novel solutions for these problems. The contributions of this dissertation are: (1) a non-IP, flat address automatic configuration scheme, which integrates lower layer addresses and P2P IDs in application layer and makes simple cryptographical assignment possible. A related paper entitled Pastry over Ad-Hoc Networks with Automatic Flat Address Configuration was submitted to Elsevier Journal of Ad Hoc Networks in May. (2) an effective ring topology construction algorithm which builds perfect ring in P2P ID space using only simplest multi-hop unicast or multicast. Upon this ring, popular structured P2P networks like Chord, Pastry could be built with great ease. A related paper entitled Chord Bootstrapping on MANETs - All Roads lead to Rome will be ready for submission after defense of the dissertation

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Intrusion detection and response model for mobile ad hoc networks.

    Get PDF
    This dissertation presents a research whose objective is to design and develop an intrusion detection and response model for Mobile Ad hoc NETworks (MANET). Mobile ad hoc networks are infrastructure-free, pervasive and ubiquitous in nature, without any centralized authority. These unique MANET characteristics present several changes to secure them. The proposed security model is called the Intrusion Detection and Response for Mobile Ad hoc Networks (IDRMAN). The goal of the proposed model is to provide a security framework that will detect various attacks and take appropriate measures to control the attack automatically. This model is based on identifying critical system parameters of a MANET that are affected by various types of attacks, and continuously monitoring the values of these parameters to detect and respond to attacks. This dissertation explains the design and development of the detection framework and the response framework of the IDRMAN. The main aspects of the detection framework are data mining using CART to identify attack sensitive network parameters from the wealth of raw network data, statistical processing using six sigma to identify the thresholds for the attack sensitive parameters and quantification of the MANET node state through a measure called the Threat Index (TI) using fuzzy logic methodology. The main aspects of the response framework are intruder identification and intruder isolation through response action plans. The effectiveness of the detection and response framework is mathematically analyzed using probability techniques. The detection framework is also evaluated by performance comparison experiments with related models, and through performance evaluation experiments from scalability perspective. Performance metrics used for assessing the detection aspect of the proposed model are detection rate and false positive rate at different node mobility speed. Performance evaluation experiments for scalability are with respect to the size of the MANET, where more and more mobile nodes are added into the MANET at varied mobility speed. The results of both the mathematical analysis and the performance evaluation experiments demonstrate that the IDRMAN model is an effective and viable security model for MANET

    A layered security approach for cooperation enforcement in MANETs

    Get PDF
    In fully self-organized MANETs, nodes are naturally reluctant to spend their precious resources forwarding other nodes' packets and are therefore liable to exhibit selfish or sometimes malicious behaviour. This selfishness could potentially lead to network partitioning and network performance degradation. Cooperation enforcement schemes, such as reputation and trust based schemes have been proposed to counteract the issue of selfishness. The sole purpose of these schemes is to ensure selfish nodes bear the consequences of their bad actions. However, malicious nodes can exploit mobility and free identities available to breach the security of these systems and escape punishment or detection. Firstly, in the case of mobility, a malicious node can gain benefit even after having been detected by a reputation-based system, by interacting directly with its source or destination nodes. Secondly, since the lack of infrastructure in MANETs does not suit centralized identity management or centralized Trusted Third Parties, nodes can create zero-cost identities without any restrictions. As a result, a selfish node can easily escape the consequences of whatever misbehaviour it has performed by simply changing identity to clear all its bad history, known as whitewashing. Hence, this makes it difficult to hold malicious nodes accountable for their actions. Finally, a malicious node can concurrently create and control more than one virtual identity to launch an attack, called a Sybil attack. In the context of reputation-based schemes, a Sybil attacker can disrupt the detection accuracy by defaming other good nodes, self-promoting itself or exchanging bogus positive recommendations about one of its quarantined identities. This thesis explores two aspects of direct interactions (DIs), i. e. Dis as a selfish nodes' strategy and Dis produced by inappropriate simulation parameters. In the latter case DIs cause confusion in the results evaluation of reputation-based schemes. We propose a method that uses the service contribution and consumption information to discourage selfish nodes that try to increase their benefit through DIs. We also propose methods that categorize nodes' benefits in order to mitigate the confusion caused in the results evaluation. A novel layered security approach is proposed using proactive and reactive paradigms to counteract whitewashing and Sybil attacks. The proactive paradigm is aimed at removing the advantages that whitewashing can provide by enforcing a non-monetary entry fee per new identity, in the form of cooperation in the network. The results show that this method deters these attackers by reducing their benefits in the network. In the reactive case, we propose a lightweight approach to detect new identities of whitewashers and Sybil attackers on the MAC layer using the 802.11 protocol without using any extra hardware. The experiments show that a signal strength based threshold exists which can help us detect Sybil and whitewashers' identities. Through the help of extensive simulations and real-world testbed experimentations, we are able to demonstrate that our proposed solution detects Sybil or whitewashers' new identities with good accuracy and reduces the benefits of malicious activity even in the presence of mobility

    Internet of Satellites (IoSat): analysis of network models and routing protocol requirements

    Get PDF
    The space segment has been evolved from monolithic to distributed satellite systems. One of these distributed systems is called the federated satellite system (FSS) which aims at establishing a win-win collaboration between satellites to improve their mission performance by using the unused on-board resources. The FSS concept requires sporadic and direct communications between satellites, using inter satellite links. However, this point-to-point communication is temporal and thus it can break existent federations. Therefore, the conception of a multi-hop scenario needs to be addressed. This is the goal of the Internet of satellites (IoSat) paradigm which, as opposed to a common backbone, proposes the creation of a network using a peer-to-peer architecture. In particular, the same satellites take part of the network by establishing intermediate collaborations to deploy a FSS. This paradigm supposes a major challenge in terms of network definition and routing protocol. Therefore, this paper not only details the IoSat paradigm, but it also analyses the different satellite network models. Furthermore, it evaluates the routing protocol candidates that could be used to implement the IoSat paradigm.Peer ReviewedPostprint (author's final draft

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Naming and Address Resolution in Heterogeneous Mobile Ad hoc Networks

    Get PDF
    This doctoral thesis deals with naming and address resolution in heterogeneous networks to be used in disaster scenarios. Such events could damage the communication infrastructure in parts or completely. To reestablish communication, Mobile Ad hoc Networks (MANETs) could be used where central entities have to be eliminated broadly. The main focus of the thesis lies on two things: an addressing scheme that helps to find nodes, even if they frequently change the subnet and the local addressing, by introducing an identifying name layer; and a MANET-adapted substitution of the Domain Name System (DNS) in order to resolve node identities to changing local addresses. We present our solution to provide decentralized name resolution based on different underlying routing protocols embedded into an adaptive routing framework. Furthermore, we show how this system works in cascaded networks and how to extend the basic approach to realize location-aware service discovery.Auch im Buchhandel erhältlich: Naming and Address Resolution in Heterogeneous Mobile Ad hoc Networks / Sebastian Schellenberg Ilmenau : Univ.-Verl. Ilmenau, 2016. - xvi, 177 Seiten ISBN 978-3-86360-129-4 Preis (Druckausgabe): 17,60

    IF-MANET: Interoperable framework for heterogeneous mobile ad hoc networks

    Get PDF
    The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies
    • …
    corecore