3,198 research outputs found

    Keys in the Clouds: Auditable Multi-device Access to Cryptographic Credentials

    Full text link
    Personal cryptographic keys are the foundation of many secure services, but storing these keys securely is a challenge, especially if they are used from multiple devices. Storing keys in a centralized location, like an Internet-accessible server, raises serious security concerns (e.g. server compromise). Hardware-based Trusted Execution Environments (TEEs) are a well-known solution for protecting sensitive data in untrusted environments, and are now becoming available on commodity server platforms. Although the idea of protecting keys using a server-side TEE is straight-forward, in this paper we validate this approach and show that it enables new desirable functionality. We describe the design, implementation, and evaluation of a TEE-based Cloud Key Store (CKS), an online service for securely generating, storing, and using personal cryptographic keys. Using remote attestation, users receive strong assurance about the behaviour of the CKS, and can authenticate themselves using passwords while avoiding typical risks of password-based authentication like password theft or phishing. In addition, this design allows users to i) define policy-based access controls for keys; ii) delegate keys to other CKS users for a specified time and/or a limited number of uses; and iii) audit all key usages via a secure audit log. We have implemented a proof of concept CKS using Intel SGX and integrated this into GnuPG on Linux and OpenKeychain on Android. Our CKS implementation performs approximately 6,000 signature operations per second on a single desktop PC. The latency is in the same order of magnitude as using locally-stored keys, and 20x faster than smart cards.Comment: Extended version of a paper to appear in the 3rd Workshop on Security, Privacy, and Identity Management in the Cloud (SECPID) 201

    ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic

    Get PDF
    It is well known that apps running on mobile devices extensively track and leak users' personally identifiable information (PII); however, these users have little visibility into PII leaked through the network traffic generated by their devices, and have poor control over how, when and where that traffic is sent and handled by third parties. In this paper, we present the design, implementation, and evaluation of ReCon: a cross-platform system that reveals PII leaks and gives users control over them without requiring any special privileges or custom OSes. ReCon leverages machine learning to reveal potential PII leaks by inspecting network traffic, and provides a visualization tool to empower users with the ability to control these leaks via blocking or substitution of PII. We evaluate ReCon's effectiveness with measurements from controlled experiments using leaks from the 100 most popular iOS, Android, and Windows Phone apps, and via an IRB-approved user study with 92 participants. We show that ReCon is accurate, efficient, and identifies a wider range of PII than previous approaches.Comment: Please use MobiSys version when referencing this work: http://dl.acm.org/citation.cfm?id=2906392. 18 pages, recon.meddle.mob

    Overcoming Poverty through Digital Inclusion

    Get PDF
    A growing body of research is showing how digital inclusion can help communities overcome poverty and injustice. The main challenge lies in how best to achieve this goal. The authors argue that digital inclusion must occur in two distinct stages. The first stage is digital literacy, accomplished with the Symbiotic Computer (SC)-smartphones and tablets. The second stage will be professional capacity-building, accomplished with the more traditional Personal Computer (PC)
    corecore