188 research outputs found

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    The Future of the Operating Room: Surgical Preplanning and Navigation using High Accuracy Ultra-Wideband Positioning and Advanced Bone Measurement

    Get PDF
    This dissertation embodies the diversity and creativity of my research, of which much has been peer-reviewed, published in archival quality journals, and presented nationally and internationally. Portions of the work described herein have been published in the fields of image processing, forensic anthropology, physical anthropology, biomedical engineering, clinical orthopedics, and microwave engineering. The problem studied is primarily that of developing the tools and technologies for a next-generation surgical navigation system. The discussion focuses on the underlying technologies of a novel microwave positioning subsystem and a bone analysis subsystem. The methodologies behind each of these technologies are presented in the context of the overall system with the salient results helping to elucidate the difficult facets of the problem. The microwave positioning system is currently the highest accuracy wireless ultra-wideband positioning system that can be found in the literature. The challenges in producing a system with these capabilities are many, and the research and development in solving these problems should further the art of high accuracy pulse-based positioning

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Data Monitoring and Analysis in Wireless Networks

    Full text link
    Various wireless network technologies have been created to meet the ever-increasing demand for wireless access to the Internet, such as wireless local area network, cellular network, sensor network and many more. The communication devices have transformed from large computational servers to small wireless hand-held devices, ranging from laptops, tablets, smartphones to small sensors. The advances of these wireless networks (e.g., faster network speed) and their intensive usages result in an enormous growth of network data in terms of volume, diversity, and complexity. All of these changes have raised complicated issues of network measurement and management. In the first part of this thesis, I study how WiFi network characteristics impact network forensics investigation and home security monitoring. I first focus on network forensics investigation and propose a wireless forensic monitoring system to collect trace digests of WiFi activities and facilitate cybercrime investigation. Then, I design and develop a low-cost home security system based on WiFi networks for physical intruder detection. Two methods - MAC-based detection and RSSI-variance-based detection, are proposed based on the characteristics of WiFi networks. In the second part, I study how to effectively and efficiently model multiple coevolving time series, which is ubiquitous in network measurement especially in wireless sensor networks. Two comprehensive algorithms are proposed to address three prominent challenges of mining coevolving sensor measured traces: (a) high order; (b) contextual constraints; and (c) temporal smoothness

    Robotic equipment carrying RN detectors: requirements and capabilities for testing

    Get PDF
    77 pags., 32 figs., 5 tabs.-- ERNCIP Radiological and Nuclear Threats to Critical Infrastructure Thematic Group . -- This publication is a Technical report by the Joint Research Centre (JRC) . -- JRC128728 . -- EUR 31044 ENThe research leading to these results has received funding from the European Union as part of the European Reference Network for Critical Infrastructure Protection (ERNCIP) projec

    Brain Responses to Emotional Faces in Natural Settings: A Wireless Mobile EEG Recording Study

    Get PDF
    open access articleThe detection of a human face in a visual field and correct reading of emotional expression of faces are important elements in everyday social interactions, decision making and emotional responses. Although brain correlates of face processing have been established in previous fMRI and electroencephalography (EEG)/MEG studies, little is known about how the brain representation of faces and emotional expressions of faces in freely moving humans. The present study aimed to detect brain electrical potentials that occur during the viewing of human faces in natural settings. 64-channel wireless EEG and eye-tracking data were recorded in 19 participants while they moved in a mock art gallery and stopped at times to evaluate pictures hung on the walls. Positive, negative and neutral valence pictures of objects and human faces were displayed. The time instants in which pictures first occurred in the visual field were identified in eye-tracking data and used to reconstruct the triggers in continuous EEG data after synchronizing the time axes of the EEG and eye-tracking device. EEG data showed a clear face-related event-related potential (ERP) in the latency interval ranging from 165 to 210 ms (N170); this component was not seen whilst participants were viewing non-living objects. The face ERP component was stronger during viewing disgusted compared to neutral faces. Source dipole analysis revealed an equivalent current dipole in the right fusiform gyrus (BA37) accounting for N170 potential. Our study demonstrates for the first time the possibility of recording brain responses to human faces and emotional expressions in natural settings. This finding opens new possibilities for clinical, developmental, social, forensic, or marketing research in which information about face processing is of importance

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    corecore