480 research outputs found

    UWB MAC Design Constraints and Considerations

    Get PDF
    In this paper, we consider the possibility of developing an optimal medium access control (MAC)layer for high data rate ultra-wideband (UWB) transmission systems that transmit minimal power. MAC in UWB wireless networks is required to coordinate channel access among competing devices. The unique UWB characteristics offer great challenges and opportunities in effective UWB MAC design. We first study the background of UWB and available MAC protocols that have been used in UWB. Secondly, we explore the constraints on UWB MAC design. Finally we present the considerations that need to be made in designing an optimal UWB MAC protocol

    Resource Allocation in Heterogeneous Networks

    Get PDF

    Enabling Ultra-Reliable and Low-Latency Communications through Unlicensed Spectrum

    Full text link
    Ā© 2018 IEEE. In this article, we aim to address the question of how to exploit the unlicensed spectrum to achieve URLLC. Potential URLLC PHY mechanisms are reviewed and then compared via simulations to demonstrate their potential benefits to URLLC. Although a number of important PHY techniques help with URLLC, the PHY layer exhibits an intrinsic trade-off between latency and reliability, posed by limited and unstable wireless channels. We then explore MAC mechanisms and discuss multi-channel strategies for achieving low-latency LTE unlicensed band access. We demonstrate, via simulations, that the periods without access to the unlicensed band can be substantially reduced by maintaining channel access processes on multiple unlicensed channels, choosing the channels intelligently, and implementing RTS/CTS

    Packet Scheduling for LTE-Advanced

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.LTE-Advanced has been approved by the International Telecommunication Union (ITU) as a 4G mobile communication system. It is also called IMT-Advanced or true 4G technology. LTE-Advanced is an evolution of LTE (Release-8) and backward compatible with LTE because they both use the same air-interface technologies such as OFDMA, MIMO, and the same core network. Since radio spectrum is the most valuable resource in mobile technology, radio resource management (RRM) mechanisms are critical for the operation of a cellular network. One of the key RRM mechanisms is packet scheduling and it allocates suitable radio resources to each user for transmission of the downlink from the base station through the air interface to each mobile station. The overall objectives of this project are to study packet scheduling mechanism for LTE-Advanced and find an optimized packet scheduling algorithm(s) to fully utilize new features and challenges of LTE-Advanced. This project is an extension of previous work done in packet scheduling in LTE at Centre for Real-time Information Networks (CRIN), UTS. This thesis begins by explaining the design considerations used to create a computer simulation tool to model packet scheduling as well as other RRM mechanisms for LTE-Advanced. Thereafter, it will model, simulate, validate, and evaluate the performance of current well-known and new packet scheduling algorithms for LTE-Advanced. In this thesis, two new algorithms called optimized cross-CC proportional fair (OCPF) and optimized cross-CC M-LWDF (OCM) are proposed. (CC: component carrier) The OCPF algorithm can overcome the weaknesses of current algorithms and improve system throughput. The OCM can provide a more effective solution for realistic traffic with strict requirement on the quality of services (QoS)
    • ā€¦
    corecore