15 research outputs found

    On the Effective Putinar's Positivstellensatz and Moment Approximation

    Full text link
    We analyse the representation of positive polynomials in terms of Sums of Squares. We provide a quantitative version of Putinar's Positivstellensatz over a compact basic semialgebraicset S, with a new polynomial bound on the degree of the positivity certificates. This bound involves a Lojasiewicz exponent associated to the description of S. We show that if the gradients of the active constraints are linearly independent on S (Constraint Qualification condition),this Lojasiewicz exponent is equal to 1. We deduce the first general polynomial bound on the convergence rate of the optima in Lasserre's Sum-of-Squares hierarchy to the global optimum of a polynomial function on S, and the first general bound on the Hausdorff distance between the cone of truncated (probability) measures supported on S and the cone of truncated pseudo-moment sequences, which are positive on the quadratic module of S

    Control of Constrained Dynamical Systems with Performance Guarantees: With Application to Vehicle motion Control

    Get PDF
    In control engineering, models of the system are commonly used for controller design. A standard control design problem consists of steering the given system output (or states) towards a predefined reference. Such a problem can be solved by employing feedback control strategies. By utilizing the knowledge of the model, these strategies compute the control inputs that shrink the error between the system outputs and their desired references over time. Usually, the control inputs must be computed such that the system output signals are kept in a desired region, possibly due to design or safety requirements. Also, the input signals should be within the physical limits of the actuators. Depending on the constraints, their violation might result in unacceptable system failures (e.g. deadly injury in the worst case). Thus, in safety-critical applications, a controller must be robust towards the modelling uncertainties and provide a priori guarantees for constraint satisfaction. A fundamental tool in constrained control application is the robust control invariant sets (RCI). For a controlled dynamical system, if initial states belong to RCI set, control inputs always exist that keep the future state trajectories restricted within the set. Hence, RCI sets can characterize a system that never violates constraints. These sets are the primary ingredient in the synthesis of the well-known constraint control strategies like model predictive control (MPC) and interpolation-based controller (IBC). Consequently, a large body of research has been devoted to the computation of these sets. In the thesis, we will focus on the computation of RCI sets and the method to generate control inputs that keep the system trajectories within RCI set. We specifically focus on the systems which have time-varying dynamics and polytopic constraints. Depending upon the nature of the time-varying element in the system description (i.e., if they are observable or not), we propose different sets of algorithms.The first group of algorithms apply to the system with time-varying, bounded uncertainties. To systematically handle the uncertainties and reduce conservatism, we exploit various tools from the robust control literature to derive novel conditions for invariance. The obtained conditions are then combined with a newly developed method for volume maximization and minimization in a convex optimization problem to compute desirably large and small RCI sets. In addition to ensuring invariance, it is also possible to guarantee desired closed-loop performance within the RCI set. Furthermore, developed algorithms can generate RCI sets with a predefined number of hyper-planes. This feature allows us to adjust the computational complexity of MPC and IBC controller when the sets are utilized in controller synthesis. Using numerical examples, we show that the proposed algorithms can outperform (volume-wise) many state-of-the-art methods when computing RCI sets.In the other case, we assume the time-varying parameters in system description to be observable. The developed algorithm has many similar characteristics as the earlier case, but now to utilize the parameter information, the control law and the RCI set are allowed to be parameter-dependent. We have numerically shown that the presented algorithm can generate invariant sets which are larger than the maximal RCI sets computed without exploiting parameter information.Lastly, we demonstrate how we can utilize some of these algorithms to construct a computationally efficient IBC controller for the vehicle motion control. The devised IBC controller guarantees to meet safety requirements mentioned in ISO 26262 and the ride comfort requirement by design

    Acta Scientiarum Mathematicarum : Tomus 44. Fasc. 3-4.

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    From classical absolute stability tests towards a comprehensive robustness analysis

    Get PDF
    In this thesis, we are concerned with the stability and performance analysis of feedback interconnections comprising a linear (time-invariant) system and an uncertain component subject to external disturbances. Building on the framework of integral quadratic constraints (IQCs), we aim at verifying stability of the interconnection using only coarse information about the input-output behavior of the uncertainty

    Acta Scientiarum Mathematicarum : Tomus 47. Fasc. 3-4.

    Get PDF

    Acta Scientiarum Mathematicarum : Tomus 53. Fasc. 3-4.

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Acta Scientiarum Mathematicarum : Tomus 46.

    Get PDF
    corecore