3,313 research outputs found

    Dual Contrastive Network for Sequential Recommendation with User and Item-Centric Perspectives

    Full text link
    With the outbreak of today's streaming data, sequential recommendation is a promising solution to achieve time-aware personalized modeling. It aims to infer the next interacted item of given user based on history item sequence. Some recent works tend to improve the sequential recommendation via randomly masking on the history item so as to generate self-supervised signals. But such approach will indeed result in sparser item sequence and unreliable signals. Besides, the existing sequential recommendation is only user-centric, i.e., based on the historical items by chronological order to predict the probability of candidate items, which ignores whether the items from a provider can be successfully recommended. The such user-centric recommendation will make it impossible for the provider to expose their new items and result in popular bias. In this paper, we propose a novel Dual Contrastive Network (DCN) to generate ground-truth self-supervised signals for sequential recommendation by auxiliary user-sequence from item-centric perspective. Specifically, we propose dual representation contrastive learning to refine the representation learning by minimizing the euclidean distance between the representations of given user/item and history items/users of them. Before the second contrastive learning module, we perform next user prediction to to capture the trends of items preferred by certain types of users and provide personalized exploration opportunities for item providers. Finally, we further propose dual interest contrastive learning to self-supervise the dynamic interest from next item/user prediction and static interest of matching probability. Experiments on four benchmark datasets verify the effectiveness of our proposed method. Further ablation study also illustrates the boosting effect of the proposed components upon different sequential models.Comment: 23 page

    Explainable Reasoning over Knowledge Graphs for Recommendation

    Full text link
    Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.Comment: 8 pages, 5 figures, AAAI-201
    • …
    corecore