1,807 research outputs found

    hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices

    Full text link
    Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery.Comment: 10 pages, 8 figures, TinyML Research Symposium 202

    Real-Time Object Tracking via Meta-Learning: Efficient Model Adaptation and One-Shot Channel Pruning

    Full text link
    We propose a novel meta-learning framework for real-time object tracking with efficient model adaptation and channel pruning. Given an object tracker, our framework learns to fine-tune its model parameters in only a few iterations of gradient-descent during tracking while pruning its network channels using the target ground-truth at the first frame. Such a learning problem is formulated as a meta-learning task, where a meta-tracker is trained by updating its meta-parameters for initial weights, learning rates, and pruning masks through carefully designed tracking simulations. The integrated meta-tracker greatly improves tracking performance by accelerating the convergence of online learning and reducing the cost of feature computation. Experimental evaluation on the standard datasets demonstrates its outstanding accuracy and speed compared to the state-of-the-art methods.Comment: 9 pages, 5 figures, AAAI 2020 accepte

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    A Lite Distributed Semantic Communication System for Internet of Things

    Get PDF
    The rapid development of deep learning (DL) and widespread applications of Internet-of-Things (IoT) have made the devices smarter than before, and enabled them to perform more intelligent tasks. However, it is challenging for any IoT device to train and run DL models independently due to its limited computing capability. In this paper, we consider an IoT network where the cloud/edge platform performs the DL based semantic communication (DeepSC) model training and updating while IoT devices perform data collection and transmission based on the trained model. To make it affordable for IoT devices, we propose a lite distributed semantic communication system based on DL, named L-DeepSC, for text transmission with low complexity, where the data transmission from the IoT devices to the cloud/edge works at the semantic level to improve transmission efficiency. Particularly, by pruning the model redundancy and lowering the weight resolution, the L-DeepSC becomes affordable for IoT devices and the bandwidth required for model weight transmission between IoT devices and the cloud/edge is reduced significantly. Through analyzing the effects of fading channels in forward-propagation and back-propagation during the training of L-DeepSC, we develop a channel state information (CSI) aided training processing to decrease the effects of fading channels on transmission. Meanwhile, we tailor the semantic constellation to make it implementable on capacity-limited IoT devices. Simulation demonstrates that the proposed L-DeepSC achieves competitive performance compared with traditional methods, especially in the low signal-to-noise (SNR) region. In particular, while it can reach as large as 40x compression ratio without performance degradation.Comment: Accpeted by JSA
    • …
    corecore