828 research outputs found

    Secondary use of Structured Electronic Health Records Data: From Observational Studies to Deep Learning-based Predictive Modeling

    Get PDF
    With the wide adoption of electronic health records (EHRs), researchers, as well as large healthcare organizations, governmental institutions, insurance, and pharmaceutical companies have been interested in leveraging this rich clinical data source to extract clinical evidence and develop predictive algorithms. Large vendors have been able to compile structured EHR data from sites all over the United States, de-identify these data, and make them available to data science researchers in a more usable format. For this dissertation, we leveraged one of the earliest and largest secondary EHR data sources and conducted three studies of increasing scope. In the first study, which was of limited scope, we conducted a retrospective observational study to compare the effect of three drugs on a specific population of approximately 3,000 patients. Using a novel statistical method, we found evidence that the selection of phenylephrine as the primary vasopressor to induce hypertension for the management of nontraumatic subarachnoid hemorrhage is associated with better outcomes as compared to selecting norepinephrine or dopamine. In the second study, we widened our scope, using a cohort of more than 100,000 patients to train generalizable models for the risk prediction of specific clinical events, such as heart failure in diabetes patients or pancreatic cancer. In this study, we found that recurrent neural network-based predictive models trained on expressive terminologies, which preserve a high level of granularity, are associated with better prediction performance as compared with other baseline methods, such as logistic regression. Finally, we widened our scope again, to train Med-BERT, a foundation model, on more than 20 million patients’ diagnosis data. Med-BERT was found to improve the prediction performance of downstream tasks that have a small sample size, which otherwise would limit the ability of the model to learn good representation. In conclusion, we found that we can extract useful information and train helpful deep learning-based predictive models. Given the limitations of secondary EHR data and taking into consideration that the data were originally collected for administrative and not research purposes, however, the findings need clinical validation. Therefore, clinical trials are warranted to further validate any new evidence extracted from such data sources before updating clinical practice guidelines. The implementability of the developed predictive models, which are in an early development phase, also warrants further evaluation

    Multimodal Machine Learning for Automated ICD Coding

    Full text link
    This study presents a multimodal machine learning model to predict ICD-10 diagnostic codes. We developed separate machine learning models that can handle data from different modalities, including unstructured text, semi-structured text and structured tabular data. We further employed an ensemble method to integrate all modality-specific models to generate ICD-10 codes. Key evidence was also extracted to make our prediction more convincing and explainable. We used the Medical Information Mart for Intensive Care III (MIMIC -III) dataset to validate our approach. For ICD code prediction, our best-performing model (micro-F1 = 0.7633, micro-AUC = 0.9541) significantly outperforms other baseline models including TF-IDF (micro-F1 = 0.6721, micro-AUC = 0.7879) and Text-CNN model (micro-F1 = 0.6569, micro-AUC = 0.9235). For interpretability, our approach achieves a Jaccard Similarity Coefficient (JSC) of 0.1806 on text data and 0.3105 on tabular data, where well-trained physicians achieve 0.2780 and 0.5002 respectively.Comment: Machine Learning for Healthcare 201

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    Enhance Representation Learning of Clinical Narrative with Neural Networks for Clinical Predictive Modeling

    Get PDF
    Medicine is undergoing a technological revolution. Understanding human health from clinical data has major challenges from technical and practical perspectives, thus prompting methods that understand large, complex, and noisy data. These methods are particularly necessary for natural language data from clinical narratives/notes, which contain some of the richest information on a patient. Meanwhile, deep neural networks have achieved superior performance in a wide variety of natural language processing (NLP) tasks because of their capacity to encode meaningful but abstract representations and learn the entire task end-to-end. In this thesis, I investigate representation learning of clinical narratives with deep neural networks through a number of tasks ranging from clinical concept extraction, clinical note modeling, and patient-level language representation. I present methods utilizing representation learning with neural networks to support understanding of clinical text documents. I first introduce the notion of representation learning from natural language processing and patient data modeling. Then, I investigate word-level representation learning to improve clinical concept extraction from clinical notes. I present two works on learning word representations and evaluate them to extract important concepts from clinical notes. The first study focuses on cancer-related information, and the second study evaluates shared-task data. The aims of these two studies are to automatically extract important entities from clinical notes. Next, I present a series of deep neural networks to encode hierarchical, longitudinal, and contextual information for modeling a series of clinical notes. I also evaluate the models by predicting clinical outcomes of interest, including mortality, length of stay, and phenotype predictions. Finally, I propose a novel representation learning architecture to develop a generalized and transferable language representation at the patient level. I also identify pre-training tasks appropriate for constructing a generalizable language representation. The main focus is to improve predictive performance of phenotypes with limited data, a challenging task due to a lack of data. Overall, this dissertation addresses issues in natural language processing for medicine, including clinical text classification and modeling. These studies show major barriers to understanding large-scale clinical notes. It is believed that developing deep representation learning methods for distilling enormous amounts of heterogeneous data into patient-level language representations will improve evidence-based clinical understanding. The approach to solving these issues by learning representations could be used across clinical applications despite noisy data. I conclude that considering different linguistic components in natural language and sequential information between clinical events is important. Such results have implications beyond the immediate context of predictions and further suggest future directions for clinical machine learning research to improve clinical outcomes. This could be a starting point for future phenotyping methods based on natural language processing that construct patient-level language representations to improve clinical predictions. While significant progress has been made, many open questions remain, so I will highlight a few works to demonstrate promising directions

    Synthesize Extremely High-dimensional Longitudinal Electronic Health Records via Hierarchical Autoregressive Language Model

    Full text link
    Synthetic electronic health records (EHRs) that are both realistic and preserve privacy can serve as an alternative to real EHRs for machine learning (ML) modeling and statistical analysis. However, generating high-fidelity and granular electronic health record (EHR) data in its original, highly-dimensional form poses challenges for existing methods due to the complexities inherent in high-dimensional data. In this paper, we propose Hierarchical Autoregressive Language mOdel (HALO) for generating longitudinal high-dimensional EHR, which preserve the statistical properties of real EHR and can be used to train accurate ML models without privacy concerns. Our HALO method, designed as a hierarchical autoregressive model, generates a probability density function of medical codes, clinical visits, and patient records, allowing for the generation of realistic EHR data in its original, unaggregated form without the need for variable selection or aggregation. Additionally, our model also produces high-quality continuous variables in a longitudinal and probabilistic manner. We conducted extensive experiments and demonstrate that HALO can generate high-fidelity EHR data with high-dimensional disease code probabilities (d > 10,000), disease co-occurrence probabilities within visits (d > 1,000,000), and conditional probabilities across consecutive visits (d > 5,000,000) and achieve above 0.9 R2 correlation in comparison to real EHR data. This performance then enables downstream ML models trained on its synthetic data to achieve comparable accuracy to models trained on real data (0.938 AUROC with HALO data vs. 0.943 with real data). Finally, using a combination of real and synthetic data enhances the accuracy of ML models beyond that achieved by using only real EHR data

    Predictive modelling for health and health-care utilisation : an observational study for Australians aged 45 and up

    Get PDF
    The burden of chronic disease is growing at a fast pace, leading to poor quality of life and high healthcare expenditures in a large portion of the Australian population. Much of the burden is borne by hospitals, and therefore there is an ever-increasing interest in preventative interventions that can keep people out of hospitals and healthier for longer periods. There is a wide range of potential interventions that may be able to achieve this goal, and policy makers need to decide which one should be funded and implemented. This task is difficult for two reasons: first it is often not clear what is the short-term effectiveness of an intervention, and how it varies in specific sub-populations, and second it is also not clear what the long-term intended and unintended consequences might be. In this thesis I make contributions to address both these difficulties. On the short-term side I focus on the use of physical activity to prevent the development of chronic disease and to reduce hospital costs. Increasing physical activity has been long heralded as a way to achieve these goals but evidence of its effectiveness has been elusive. In this thesis I provide data driven evidence to justify policies that encourage higher levels of physical activity (PA) in middle age and older Australian population. I use data from the “45 and up” and the Social, Economic and Environmental Factors (SEEF) study, linked with the Admitted Patient Data Collection (APDC), to identify and study the cost and health trajectories of individuals with different levels of physical activity. The results show a clear statistically significant association between PA and lower hospitalisation cost, as well as between PA and reduced risk of heart disease, diabetes and stroke. On the long-term side of the analysis, I placed this thesis in the context of a larger program of work performed at Western Sydney University that aims to build a microsimulation model for the analysis of health policy interventions. In this framework I studied predictive models that use survey and/or administrative data to predict hospital costs and resource utilisation. I placed particular emphasis on the application of methods borrowed from Natural Language Processing to understand how to use the thousands of diagnosis and procedure codes found in administrative data as input to predictive models. The methods developed in this thesis go beyond the application to hospital data and can be used in any predictive model that relies on complex coding of healthcare information
    • …
    corecore