4,740 research outputs found

    Scene modelling using an adaptive mixture of Gaussians in colour and space

    Get PDF
    We present an integrated pixel segmentation and region tracking algorithm, designed for indoor environments. Visual monitoring systems often use frame differencing techniques to independently classify each image pixel as either foreground or background. Typically, this level of processing does not take account of the global image structure, resulting in frequent misclassification. We use an adaptive Gaussian mixture model in colour and space to represent background and foreground regions of the scene. This model is used to probabilistically classify observed pixel values, incorporating the global scene structure into pixel-level segmentation. We evaluate our system over 4 sequences and show that it successfully segments foreground pixels and tracks major foreground regions as they move through the scene

    Automated Particle Identification through Regression Analysis of Size, Shape and Colour

    Get PDF
    Rapid point of care diagnostic tests and tests to provide therapeutic information are now available for a range of specific conditions from the measurement of blood glucose levels for diabetes to card agglutination tests for parasitic infections. Due to a lack of specificity these test are often then backed up by more conventional lab based diagnostic methods for example a card agglutination test may be carried out for a suspected parasitic infection in the field and if positive a blood sample can then be sent to a lab for confirmation. The eventual diagnosis is often achieved by microscopic examination of the sample. In this paper we propose a computerized vision system for aiding in the diagnostic process; this system used a novel particle recognition algorithm to improve specificity and speed during the diagnostic process. We will show the detection and classification of different types of cells in a diluted blood sample using regression analysis of their size, shape and colour. The first step is to define the objects to be tracked by a Gaussian Mixture Model for background subtraction and binary opening and closing for noise suppression. After subtracting the objects of interest from the background the next challenge is to predict if a given object belongs to a certain category or not. This is a classification problem, and the output of the algorithm is a Boolean value (true/false). As such the computer program should be able to ”predict” with reasonable level of confidence if a given particle belongs to the kind we are looking for or not. We show the use of a binary logistic regression analysis with three continuous predictors: size, shape and color histogram. The results suggest this variables could be very useful in a logistic regression equation as they proved to have a relatively high predictive value on their own
    corecore