990 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Advancing Land Cover Mapping in Remote Sensing with Deep Learning

    Get PDF
    Automatic mapping of land cover in remote sensing data plays an increasingly significant role in several earth observation (EO) applications, such as sustainable development, autonomous agriculture, and urban planning. Due to the complexity of the real ground surface and environment, accurate classification of land cover types is facing many challenges. This thesis provides novel deep learning-based solutions to land cover mapping challenges such as how to deal with intricate objects and imbalanced classes in multi-spectral and high-spatial resolution remote sensing data. The first work presents a novel model to learn richer multi-scale and global contextual representations in very high-resolution remote sensing images, namely the dense dilated convolutions' merging (DDCM) network. The proposed method is light-weighted, flexible and extendable, so that it can be used as a simple yet effective encoder and decoder module to address different classification and semantic mapping challenges. Intensive experiments on different benchmark remote sensing datasets demonstrate that the proposed method can achieve better performance but consume much fewer computation resources compared with other published methods. Next, a novel graph model is developed for capturing long-range pixel dependencies in remote sensing images to improve land cover mapping. One key component in the method is the self-constructing graph (SCG) module that can effectively construct global context relations (latent graph structure) without requiring prior knowledge graphs. The proposed SCG-based models achieved competitive performance on different representative remote sensing datasets with faster training and lower computational cost compared to strong baseline models. The third work introduces a new framework, namely the multi-view self-constructing graph (MSCG) network, to extend the vanilla SCG model to be able to capture multi-view context representations with rotation invariance to achieve improved segmentation performance. Meanwhile, a novel adaptive class weighting loss function is developed to alleviate the issue of class imbalance commonly found in EO datasets for semantic segmentation. Experiments on benchmark data demonstrate the proposed framework is computationally efficient and robust to produce improved segmentation results for imbalanced classes. To address the key challenges in multi-modal land cover mapping of remote sensing data, namely, 'what', 'how' and 'where' to effectively fuse multi-source features and to efficiently learn optimal joint representations of different modalities, the last work presents a compact and scalable multi-modal deep learning framework (MultiModNet) based on two novel modules: the pyramid attention fusion module and the gated fusion unit. The proposed MultiModNet outperforms the strong baselines on two representative remote sensing datasets with fewer parameters and at a lower computational cost. Extensive ablation studies also validate the effectiveness and flexibility of the framework

    Imbalance Knowledge-Driven Multi-modal Network for Land-Cover Semantic Segmentation Using Images and LiDAR Point Clouds

    Full text link
    Despite the good results that have been achieved in unimodal segmentation, the inherent limitations of individual data increase the difficulty of achieving breakthroughs in performance. For that reason, multi-modal learning is increasingly being explored within the field of remote sensing. The present multi-modal methods usually map high-dimensional features to low-dimensional spaces as a preprocess before feature extraction to address the nonnegligible domain gap, which inevitably leads to information loss. To address this issue, in this paper we present our novel Imbalance Knowledge-Driven Multi-modal Network (IKD-Net) to extract features from raw multi-modal heterogeneous data directly. IKD-Net is capable of mining imbalance information across modalities while utilizing a strong modal to drive the feature map refinement of the weaker ones in the global and categorical perspectives by way of two sophisticated plug-and-play modules: the Global Knowledge-Guided (GKG) and Class Knowledge-Guided (CKG) gated modules. The whole network then is optimized using a holistic loss function. While we were developing IKD-Net, we also established a new dataset called the National Agriculture Imagery Program and 3D Elevation Program Combined dataset in California (N3C-California), which provides a particular benchmark for multi-modal joint segmentation tasks. In our experiments, IKD-Net outperformed the benchmarks and state-of-the-art methods both in the N3C-California and the small-scale ISPRS Vaihingen dataset. IKD-Net has been ranked first on the real-time leaderboard for the GRSS DFC 2018 challenge evaluation until this paper's submission

    Integrating efficientnet into an hafnet structure for building mapping in high-resolution optical earth observation data

    Get PDF
    Automated extraction of buildings from Earth observation (EO) data is important for various applications, including updating of maps, risk assessment, urban planning, and policy-making. Combining data from different sensors, such as high-resolution multispectral images (HRI) and light detection and ranging (LiDAR) data, has shown great potential in building extraction. Deep learning (DL) is increasingly used in multi-modal data fusion and urban object extraction. However, DL-based multi-modal fusion networks may under-perform due to insufficient learning of “joint features” from multiple sources and oversimplified approaches to fusing multi-modal features. Recently, a hybrid attention-aware fusion network (HAFNet) has been proposed for building extraction from a dataset, including co-located Very-High-Resolution (VHR) optical images and light detection and ranging (LiDAR) joint data. The system reported good performances thanks to the adaptivity of the attention mechanism to the features of the information content of the three streams but suffered from model over-parametrization, which inevitably leads to long training times and heavy computational load. In this paper, the authors propose a restructuring of the scheme, which involved replacing VGG-16-like encoders with the recently proposed EfficientNet, whose advantages counteract exactly the issues found with the HAFNet scheme. The novel configuration was tested on multiple benchmark datasets, reporting great improvements in terms of processing times, and also in terms of accuracy. The new scheme, called HAFNetE (HAFNet with EfficientNet integration), appears indeed capable of achieving good results with less parameters, translating into better computational efficiency. Based on these findings, we can conclude that, given the current advancements in single-thread schemes, the classical multi-thread HAFNet scheme could be effectively transformed by the HAFNetE scheme by replacing VGG-16 with EfficientNet blocks on each single thread. The remarkable reduction achieved in computational requirements moves the system one step closer to on-board implementation in a possible, future “urban mapping” satellite constellation

    Semantic Labeling of High Resolution Images Using EfficientUNets and Transformers

    Full text link
    Semantic segmentation necessitates approaches that learn high-level characteristics while dealing with enormous amounts of data. Convolutional neural networks (CNNs) can learn unique and adaptive features to achieve this aim. However, due to the large size and high spatial resolution of remote sensing images, these networks cannot analyze an entire scene efficiently. Recently, deep transformers have proven their capability to record global interactions between different objects in the image. In this paper, we propose a new segmentation model that combines convolutional neural networks with transformers, and show that this mixture of local and global feature extraction techniques provides significant advantages in remote sensing segmentation. In addition, the proposed model includes two fusion layers that are designed to represent multi-modal inputs and output of the network efficiently. The input fusion layer extracts feature maps summarizing the relationship between image content and elevation maps (DSM). The output fusion layer uses a novel multi-task segmentation strategy where class labels are identified using class-specific feature extraction layers and loss functions. Finally, a fast-marching method is used to convert all unidentified class labels to their closest known neighbors. Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Residual Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data

    Get PDF
    In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation

    Multitemporal Very High Resolution from Space: Outcome of the 2016 IEEE GRSS Data Fusion Contest

    Get PDF
    In this paper, the scientific outcomes of the 2016 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society are discussed. The 2016 Contest was an open topic competition based on a multitemporal and multimodal dataset, which included a temporal pair of very high resolution panchromatic and multispectral Deimos-2 images and a video captured by the Iris camera on-board the International Space Station. The problems addressed and the techniques proposed by the participants to the Contest spanned across a rather broad range of topics, and mixed ideas and methodologies from the remote sensing, video processing, and computer vision. In particular, the winning team developed a deep learning method to jointly address spatial scene labeling and temporal activity modeling using the available image and video data. The second place team proposed a random field model to simultaneously perform coregistration of multitemporal data, semantic segmentation, and change detection. The methodological key ideas of both these approaches and the main results of the corresponding experimental validation are discussed in this paper

    SEGCloud: Semantic Segmentation of 3D Point Clouds

    Full text link
    3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and show performance comparable or superior to the state-of-the-art on all datasets.Comment: Accepted as a spotlight at the International Conference of 3D Vision (3DV 2017
    • …
    corecore