55 research outputs found

    Hey, Influencer! Message Delivery to Social Central Nodes in Social Opportunistic Networks

    Get PDF
    This paper presents a new strategy to efficiently deliver messages to influencers in social opportunistic networks. An influencer node is an important node in the network with a high social centrality and, as a consequence, it can have some characteristics such as high reputation, trustfulness and credibility, that makes it an interesting recipient. Social network analysis has already been used to improve routing in opportunistic networking, but there are no mechanisms to efficiently route and deliver messages to these network influencers. The delivery strategy proposed in this article uses optimal stopping statistical techniques to choose among the different delivery candidate nodes in order to maximise the social centrality of the node chosen for delivery. For this decision process, we propose a routing-delivery strategy that takes into account node characteristics such as how central a node is in terms of its physical encounters. We show, by means of simulations based on real traces and message exchange datasets, that our proposal is efficient in terms of influencer selection, overhead, delivery ratio and latency time. With the proposed strategy, a new venue of applications for opportunistic networks can be devised and developed using the leading figure of social influencer

    Efficient Broadcast in Opportunistic Networks using Optimal Stopping Theory

    Get PDF
    In this paper, we present a broadcast dissemination protocol for messages in opportunistic networks (OppNet) that is efficient in terms of energy consumption and network capacity usage, while not increasing the number of excluded nodes (nodes not receiving messages). The majority of the OppNet broadcast delivery schemes proposed in the literature, do not take into consideration that reducing energy and buffer usage is of paramount importance in these wireless networks normally consisting of small devices. In our protocol, broadcast messages are limited by carefully selecting their prospective forwarders (storers). The keystone of our protocol is the use of Optimal Stopping Theory, which selects the best message storers at every stage of the algorithm, while holding back broad message dissemination until convenient conditions are met. The broadcast efficiency of the proposed protocol out competes other OppNet broadcast proposals in four well-known scenarios. Furthermore, the protocol reduces the number of both dropped messages and nodes not receiving messages, thus maximising network capacity usage, and the span of the message deliver

    Enhanced Community-Based Routing for Low-Capacity Pocket Switched Networks

    Get PDF
    Sensor devices and the emergent networks that they enable are capable of transmitting information between data sources and a permanent data sink. Since these devices have low-power and intermittent connectivity, latency of the data may be tolerated in an effort to save energy for certain classes of data. The BUBBLE routing algorithm developed by Hui et al. in 2008 provides consistent routing by employing a model which computes individual nodes popularity from sets of nodes and then uses these popularity values for forwarding decisions. This thesis considers enhancements to BUBBLE based on the hypothesis that nodes do form groups and certain centrality values of nodes within these groups can be used to improve routing decisions further. Built on this insight, there are two algorithms proposed in this thesis. First is the Community-Based- Forwarding (CBF), which uses pairwise group interactions and pairwise node-to-group interactions as a measure of popularity for routing messages. By having a different measure of popularity than BUBBLE, as an additional factor in determining message forwarding, CBF is a more conservative routing scheme than BUBBLE. Thus, it provides consistently superior message transmission and delivery performance at an acceptable delay cost in resource constrained environments. To overcome this drawback, the concept of unique interaction pattern within groups of nodes is introduced in CBF and it is further renewed into an enhanced algorithm known as Hybrid-Community-Based- Forwarding (HCBF). Utilizing this factor will channel messages along the entire path with consideration for higher probability of contact with the destination group and the destination node. Overall, the major contribution of this thesis is to design and evaluate an enhanced social based routing algorithm for resource-constrained Pocket Switched Networks (PSNs), which will optimize energy consumption related to data transfer. It will do so by explicitly considering features of communities in order to reduce packet loss while maintaining high delivery ratio and reduced delay

    Improving Delivery Probability in Mobile Opportunistic Networks with Social-Based Routing

    Get PDF
    There are contexts where TCP/IP is not suitable for performing data transmission due to long delays, timeouts, network partitioning, and interruptions. In these scenarios, mobile opportunistic networks (MONs) are a valid option, providing asynchronous transmissions in dynamic topologies. These architectures exploit physical encounters and persistent storage to communicate nodes that lack a continuous end-to-end path. In recent years, many routing algorithms have been based on social interactions. Smartphones and wearables are in vogue, applying social information to optimize paths between nodes. This work proposes Refine Social Broadcast (RSB), a social routing algorithm. RSB uses social behavior and node interests to refine the message broadcast in the network, improving the delivery probability while reducing redundant data duplication. The proposal combines the identification of the most influential nodes to carry the information toward the destination with interest-based routing. To evaluate the performance, RSB is applied to a simulated case of use based on a realistic loneliness detection methodology in elderly adults. The obtained delivery probability, latency, overhead, and hops are compared with the most popular social-based routers, namely, EpSoc, SimBet, and BubbleRap. RSB manifests a successful delivery probability, exceeding the second-best result (SimBet) by 17% and reducing the highest overhead (EpSoc) by 97%.info:eu-repo/semantics/publishedVersio

    Social relationship based routing for delay tolerant Bluetooth-enabled PSN communications

    Get PDF
    PhDOpportunistic networking is a concept derived from the mobile ad hoc networking in which devices have no prior knowledge of routes to the intended destinations. Content dissemination in opportunistic networks thus is carried out in a store and forward fashion. Opportunistic routing poses distinct challenges compared to the traditional networks such as Internet and mobile ad hoc networks where nodes have prior knowledge of the routes to the intended destinations. Information dissemination in opportunistic networks requires dealing with intermittent connectivity, variable delays, short connection durations and dynamic topology. Addressing these challenges becomes a significant motivation for developing novel applications and protocols for information dissemination in opportunistic networks. This research looks at opportunistic networking, specifically at networks composed of mobile devices or, pocket switched networks. Mobile devices are now accepted as an integral part of society and are often equipped with Bluetooth capabilities that allow for opportunistic information sharing between devices. The ad hoc nature of opportunistic networks means nodes have no advance routing knowledge and this is key challenge. Human social relationships are based on certain patterns that can be exploited to make opportunistic routing decisions. Targeting nodes that evidence high popularity or high influence can enable more efficient content dissemination. Based on this observation, a novel impact based neighbourhood algorithm called Lobby Influence is presented. The algorithm is tested against two previously proposed algorithms and proves better in terms of message delivery and delay. Moreover, unlike other social based algorithms, which have a tendency to concentrate traffic through their identified routing nodes, the new algorithm provides a fairer load distribution, thus alleviating the tendency to saturate individual nodes

    Towards efficacy and efficiency in sparse delay tolerant networks

    Get PDF
    The ubiquitous adoption of portable smart devices has enabled a new way of communication via Delay Tolerant Networks (DTNs), whereby messages are routed by the personal devices carried by ever-moving people. Although a DTN is a type of Mobile Ad Hoc Network (MANET), traditional MANET solutions are ill-equipped to accommodate message delivery in DTNs due to the dynamic and unpredictable nature of people\u27s movements and their spatio-temporal sparsity. More so, such DTNs are susceptible to catastrophic congestion and are inherently chaotic and arduous. This manuscript proposes approaches to handle message delivery in notably sparse DTNs. First, the ChitChat system [69] employs the social interests of individuals participating in a DTN to accurately model multi-hop relationships and to make opportunistic routing decisions for interest-annotated messages. Second, the ChitChat system is hybridized [70] to consider both social context and geographic information for learning the social semantics of locations so as to identify worthwhile routing opportunities to destinations and areas of interest. Network density analyses of five real-world datasets is conducted to identify sparse datasets on which to conduct simulations, finding that commonly-used datasets in past DTN research are notably dense and well connected, and suggests two rarely used datasets are appropriate for research into sparse DTNs. Finally, the Catora system is proposed to address congestive-driven degradation of service in DTNs by accomplishing two simultaneous tasks: (i) expedite the delivery of higher quality messages by uniquely ordering messages for transfer and delivery, and (ii) avoid congestion through strategic buffer management and message removal. Through dataset-driven simulations, these systems are found to outperform the state-of-the-art, with ChitChat facilitating delivery in sparse DTNs and Catora unencumbered by congestive conditions --Abstract, page iv

    Message forwarding techniques in Bluetooth enabled opportunistic communication environment

    Get PDF
    These days, most of the mobile phones are smart enough with computer like intelligence and equipped with multiple communication technologies such as Bluetooth, wireless LAN, GPRS and GSM. Different communication medium on single device have unlocked the new horizon of communication means. Modern mobile phones are not only capable of using traditional way of communication via GSM or GPRS; but, also use wireless LANs using access points where available. Among these communication means, Bluetooth technology is very intriguing and unique in nature. Any two devices equipped with Bluetooth technology can communicate directly due to their unique IDs in the world. This is opposite to GSM or Wireless LAN technology; where devices are dependent on infrastructure of service providers and have to pay for their services. Due to continual advancement in the field of mobile technology, mobile ad-hoc network seems to be more realised than ever using Bluetooth. In traditional mobile ad-hoc networks (MANETs), before information sharing, devices have partial or full knowledge of routes to the destinations using ad-hoc routing protocols. This kind of communication can only be realised if nodes follow the certain pattern. However, in reality mobile ad-hoc networks are highly unpredictable, any node can join or leave network at any time, thus making them risky for effective communication. This issue is addressed by introducing new breed of ad-hoc networking, known as opportunistic networks. Opportunistic networking is a concept that is evolved from mobile ad-hoc networking. In opportunistic networks nodes have no prior knowledge of routes to intended destinations. Any node in the network can be used as potential forwarder with the exception of taking information one step closer to intended destination. The forwarding decision is based on the information gathered from the source node or encountering node. The opportunistic forwarding can only be achieved if message forwarding is carried out in store and forward fashion. Although, opportunistic networks are more flexible than traditional MANETs, however, due to little insight of network, it poses distinct challenges such as intermittent connectivity, variable delays, short connection duration and dynamic topology. Addressing these challenges in opportunistic network is the basis for developing new and efficient protocols for information sharing. The aim of this research is to design different routing/forwarding techniques for opportunistic networks to improve the overall message delivery at destinations while keeping the communication cost very low. Some assumptions are considered to improved directivity of message flow towards intended destinations. These assumptions exploit human social relationships analogies, approximate awareness of the location of nodes in the network and use of hybrid communication by combining several routing concept to gain maximum message directivity. Enhancement in message forwarding in opportunistic networks can be achieved by targeting key nodes that show high degree of influence, popularity or knowledge inside the network. Based on this observation, this thesis presents an improved version of Lobby Influence (LI) algorithm called as Enhanced Lobby Influence (ELI). In LI, the forwarding decision is based on two important factors, popularity of node and popularity of node’s neighbour. The forwarding decision of Enhanced Lobby Influence not only depends on the intermediate node selection criteria as defined in Lobby Influence but also based on the knowledge of previously direct message delivery of intended destination. An improvement can be observed if nodes are aware of approximate position of intended destinations by some communication means such as GPS, GSM or WLAN access points. With the knowledge of nodes position in the network, high message directivity can be achieved by using simple concepts of direction vectors. Based on this observation, this research presents another new algorithm named as Location-aware opportunistic content forwarding (LOC). Last but not least, this research presents an orthodox yet unexplored approach for efficient message forwarding in Bluetooth communication environment, named as Hybrid Content Forwarding (HCF). The new approach combines the characteristics of social centrality based forwarding techniques used in opportunistic networks with traditional MANETs protocols used in Bluetooth scatternets. Simulation results show that a significant increase in delivery radio and cost reduction during content forwarding is observed by deploying these proposed algorithms. Also, comparison with existing technique shows the efficiency of using the new schemes

    Human dynamic networks in opportunistic routing and epidemiology

    Get PDF
    Measuring human behavioral patterns has broad application across different sciences. An individual’s social, proximal and geographical contact patterns can have significant importance in Delay Tolerant Networking (DTN) and epidemiological modeling. Recent advances in computer science have not only provided the opportunity to record these behaviors with considerably higher temporal resolution and phenomenological accuracy, but also made it possible to record specific aspects of the behaviors which have been previously difficult to measure. This thesis presents a data collection system using tiny sensors which is capable of recording humans’ proximal contacts and their visiting pattern to a set of geographical locations. The system also collects information on participants’ health status using weekly surveys. The system is tested on a population of 36 participants and 11 high-traffic public places. The resulting dataset offers rich information on human proximal and geographic contact patterns cross-linked with their health information. In addition to the basic analysis of the dataset, the collected data is applied to two different applications. In DTNs the dataset is used to study the importance of public places as relay nodes, and described an algorithm that takes advantage of stationary nodes to improve routing performance and load balancing in the network. In epidemiological modeling, the collected dataset is combined with data on H1N1 infection spread over the same time period and designed a model on H1N1 pathogen transmission based on these data. Using the collected high-resolution contact data as the model’s contact patterns, this work represents the importance of contact density in addition to contact diversity in infection transmission rate. It also shows that the network measurements which are tied to contact duration are more representative of the relation between centrality of a person and their chance of contracting the infection

    Data dissemination in partially cooperative opportunistic networks

    Get PDF
    Wireless communication between mobile users has become more popular than ever in the last decade, leading to increasing demand for network infrastructure. The growing popularity of smartphones among mobile users, leads an alternative infrastructure-less networking paradigm known as opportunistic networks. In opportunistic networks, mobile nodes such as smartphones use the mobility of devices in addition to wireless forwarding between intermediate nodes to facilitate communication without requiring a simultaneous path between source and destination. Without guaranteed connectivity, the strategy for data delivery is a key research challenge for such networks. In this research, we present the design and evaluation of the Repository-based Data Dissemination (RDD) system, a communication system which does not rely on cooperation from mobile nodes but instead employs a small number of well-placed standalone fixed devices (named repositories) to facilitate data dissemination. To find the optimal location for their repositories, RDD employs knowledge of the mobility characteristics of mobile users. To evaluate RDD, a new mobility model “Human mobility model” has been designed, which was able to closely mimic the users’ real mobility, and proven by conducting a series of experiments compared with real mobility traces. Using this model, the performance of the RDD is evaluated using custom simulation. In comparison with epidemic routing, the results show that RDD is able to drastically reduce resource consumption, expressed in terms of message redundancy, while preserving the performance in terms of data object delivery
    • …
    corecore