36 research outputs found

    Improved ECG watermarking technique using curvelet transform

    Get PDF
    Hiding data in electrocardiogram signals are a big challenge due to the embedded information that can hamper the accuracy of disease detection. On the other hand, hiding data into ECG signals provides more security for, and authenticity of, the patient\u27s data. Some recent studies used non-blind watermarking techniques to embed patient information and data of a patient into ECG signals. However, these techniques are not robust against attacks with noise and show a low performance in terms of parameters such as peak signal to noise ratio (PSNR), normalized correlation (NC), mean square error (MSE), percentage residual difference (PRD), bit error rate (BER), structure similarity index measure (SSIM). In this study, an improved blind ECG-watermarking technique is proposed to embed the information of the patient\u27s data into the ECG signals using curvelet transform. The Euclidean distance between every two curvelet coefficients was computed to cluster the curvelet coefficients and after this, data were embedded into the selected clusters. This was an improvement not only in terms of extracting a hidden message from the watermarked ECG signals, but also robust against image-processing attacks. Performance metrics of SSIM, NC, PSNR and BER were used to measure the superiority of presented work. KL divergence and PRD were also used to reveal data hiding in curvelet coefficients of ECG without disturbing the original signal. The simulation results also demonstrated that the clustering method in the curvelet domain provided the best performance-even when the hidden messages were large size

    State-of-the-art Survey of Data Hiding in ECG Signal

    Get PDF
    With the development of new communication technologies, the number of biomedical data that is transmitted is constantly increasing. This is sensitive data and therefore it is very important to preserve privacy when transmitting it. For this purpose, techniques for data hiding in biomedical signals are used. This is a comprehensive survey of research papers that covers the latest techniques for data hiding in ECG signal and old techniques that are not covered by the latest surveys. We show an overview of the methodology, robustness, and imperceptibility of the techniques

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    PROACTIVE BIOMETRIC-ENABLED FORENSIC IMPRINTING SYSTEM

    Get PDF
    Insider threats are a significant security issue. The last decade has witnessed countless instances of data loss and exposure in which leaked data have become publicly available and easily accessible. Losing or disclosing sensitive data or confidential information may cause substantial financial and reputational damage to a company. Therefore, preventing or responding to such incidents has become a challenging task. Whilst more recent research has focused explicitly on the problem of insider misuse, it has tended to concentrate on the information itself—either through its protection or approaches to detecting leakage. Although digital forensics has become a de facto standard in the investigation of criminal activities, a fundamental problem is not being able to associate a specific person with particular electronic evidence, especially when stolen credentials and the Trojan defence are two commonly cited arguments. Thus, it is apparent that there is an urgent requirement to develop a more innovative and robust technique that can more inextricably link the use of information (e.g., images and documents) to the users who access and use them. Therefore, this research project investigates the role that transparent and multimodal biometrics could play in providing this link by leveraging individuals’ biometric information for the attribution of insider misuse identification. This thesis examines the existing literature in the domain of data loss prevention, detection, and proactive digital forensics, which includes traceability techniques. The aim is to develop the current state of the art, having identified a gap in the literature, which this research has attempted to investigate and provide a possible solution. Although most of the existing methods and tools used by investigators to conduct examinations of digital crime help significantly in collecting, analysing and presenting digital evidence, essential to this process is that investigators establish a link between the notable/stolen digital object and the identity of the individual who used it; as opposed to merely using an electronic record or a log that indicates that the user interacted with the object in question (evidence). Therefore, the proposed approach in this study seeks to provide a novel technique that enables capturing individual’s biometric identifiers/signals (e.g. face or keystroke dynamics) and embedding them into the digital objects users are interacting with. This is achieved by developing two modes—a centralised or decentralised manner. The centralised approach stores the mapped information alongside digital object identifiers in a centralised storage repository; the decentralised approach seeks to overcome the need for centralised storage by embedding all the necessary information within the digital object itself. Moreover, no explicit biometric information is stored, as only the correlation that points to those locations within the imprinted object is preserved. Comprehensive experiments conducted to assess the proposed approach show that it is highly possible to establish this correlation even when the original version of the examined object has undergone significant modification. In many scenarios, such as changing or removing part of an image or document, including words and sentences, it was possible to extract and reconstruct the correlated biometric information from a modified object with a high success rate. A reconstruction of the feature vector from unmodified images was possible using the generated imprints with 100% accuracy. This was achieved easily by reversing the imprinting processes. Under a modification attack, in which the imprinted object is manipulated, at least one imprinted feature vector was successfully retrieved from an average of 97 out of 100 images, even when the modification percentage was as high as 80%. For the decentralised approach, the initial experimental results showed that it was possible to retrieve the embedded biometric signals successfully, even when the file (i.e., image) had had 75% of its original status modified. The research has proposed and validated a number of approaches to the embedding of biometric data within digital objects to enable successful user attribution of information leakage attacks.Embassy of Saudi Arabia in Londo

    Bioelectrical User Authentication

    Get PDF
    There has been tremendous growth of mobile devices, which includes mobile phones, tablets etc. in recent years. The use of mobile phone is more prevalent due to their increasing functionality and capacity. Most of the mobile phones available now are smart phones and better processing capability hence their deployment for processing large volume of information. The information contained in these smart phones need to be protected against unauthorised persons from getting hold of personal data. To verify a legitimate user before accessing the phone information, the user authentication mechanism should be robust enough to meet present security challenge. The present approach for user authentication is cumbersome and fails to consider the human factor. The point of entry mechanism is intrusive which forces users to authenticate always irrespectively of the time interval. The use of biometric is identified as a more reliable method for implementing a transparent and non-intrusive user authentication. Transparent authentication using biometrics provides the opportunity for more convenient and secure authentication over secret-knowledge or token-based approaches. The ability to apply biometrics in a transparent manner improves the authentication security by providing a reliable way for smart phone user authentication. As such, research is required to investigate new modalities that would easily operate within the constraints of a continuous and transparent authentication system. This thesis explores the use of bioelectrical signals and contextual information for non-intrusive approach for authenticating a user of a mobile device. From fusion of bioelectrical signals and context awareness information, three algorithms where created to discriminate subjects with overall Equal Error Rate (EER of 3.4%, 2.04% and 0.27% respectively. Based vii | P a g e on the analysis from the multi-algorithm implementation, a novel architecture is proposed using a multi-algorithm biometric authentication system for authentication a user of a smart phone. The framework is designed to be continuous, transparent with the application of advanced intelligence to further improve the authentication result. With the proposed framework, it removes the inconvenience of password/passphrase etc. memorability, carrying of token or capturing a biometric sample in an intrusive manner. The framework is evaluated through simulation with the application of a voting scheme. The simulation of the voting scheme using majority voting improved to the performance of the combine algorithm (security level 2) to FRR of 22% and FAR of 0%, the Active algorithm (security level 2) to FRR of 14.33% and FAR of 0% while the Non-active algorithm (security level 3) to FRR of 10.33% and FAR of 0%

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces
    corecore