170 research outputs found

    OTFS-NOMA: An Efficient Approach for Exploiting Heterogenous User Mobility Profiles

    Get PDF
    This paper considers a challenging communication scenario, in which users have heterogenous mobility profiles, e.g., some users are moving at high speeds and some users are static. A new non-orthogonal multiple-access (NOMA) transmission protocol that incorporates orthogonal time frequency space (OTFS) modulation is proposed. Thereby, users with different mobility profiles are grouped together for the implementation of NOMA. The proposed OTFS-NOMA protocol is shown to be applicable to both uplink and downlink transmission, where sophisticated transmit and receive strategies are developed to remove inter-symbol interference and harvest both multi-path and multi-user diversity. Analytical results demonstrate that both the high-mobility and low-mobility users benefit from the application of OTFS-NOMA. In particular, the use of NOMA allows the spreading of the high-mobility users' signals over a large amount of time-frequency resources, which enhances the OTFS resolution and improves the detection reliability. In addition, OTFS-NOMA ensures that low-mobility users have access to bandwidth resources which in conventional OTFS-orthogonal multiple access (OTFS-NOMA) would be solely occupied by the high-mobility users. Thus, OTFS-NOMA improves the spectral efficiency and reduces latency

    Cyclic Delay-Doppler Shift: A Simple Transmit Diversity Technique for Delay-Doppler Waveforms in Doubly Selective Channels

    Full text link
    Delay-Doppler waveform design has been considered as a promising solution to achieve reliable communication under high-mobility channels for the space-air-ground-integrated networks (SAGIN). In this paper, we introduce the cyclic delay-Doppler shift (CDDS) technique for delay-Doppler waveforms to extract transmit diversity in doubly selective channels. Two simple CDDS schemes, named time-domain CDDS (TD-CDDS) and modulation-domain CDDS (MD-CDDS), are proposed in the setting of multiple-input multiple-output (MIMO). We demonstrate the applications of CDDS on two representative delay-Doppler waveforms, namely orthogonal time frequency space (OTFS) and affine frequency division multiplexing (AFDM), by deriving their corresponding CDDS matrices. Furthermore, we prove theoretically and experimentally that CDDS can provide OTFS and AFDM with full transmit diversity gain on most occasions

    AFDM vs OTFS: A Comparative Study of Promising Waveforms for ISAC in Doubly-Dispersive Channels

    Full text link
    This white paper aims to briefly describe a proposed article that will provide a thorough comparative study of waveforms designed to exploit the features of doubly-dispersive channels arising in heterogeneous high-mobility scenarios as expected in the beyond fifth generation (B5G) and sixth generation (6G), in relation to their suitability to integrated sensing and communications (ISAC) systems. In particular, the full article will compare the well-established delay-Doppler domain-based orthognal time frequency space (OTFS) and the recently proposed chirp domain-based affine frequency division multiplexing (AFDM) waveforms. Both these waveforms are designed based on a full delay- Doppler representation of the time variant (TV) multipath channel, yielding not only robustness and orthogonality of information symbols in high-mobility scenarios, but also a beneficial implication for environment target detection through the inherent capability of estimating the path delay and Doppler shifts, which are standard radar parameters. These modulation schemes are distinct candidates for ISAC in B5G/6G systems, such that a thorough study of their advantages, shortcomings, implications to signal processing, and performance of communication and sensing functions are well in order. In light of the above, a sample of the intended contribution (Special Issue paper) is provided below
    corecore