646 research outputs found

    Cut-elimination for the mu-calculus with one variable

    Get PDF
    We establish syntactic cut-elimination for the one-variable fragment of the modal mu-calculus. Our method is based on a recent cut-elimination technique by Mints that makes use of Buchholz' Omega-rule.Comment: In Proceedings FICS 2012, arXiv:1202.317

    On an Intuitionistic Logic for Pragmatics

    Get PDF
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justications and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the S4 modal translation, we give a denition of a system AHL of bi-intuitionistic logic that correctly represents the duality between intuitionistic and co-intuitionistic logic, correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism as a distributed calculus of coroutines is then used to give an operational interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear calculus of co-intuitionistic coroutines is dened and a probabilistic interpretation of linear co-intuitionism is given as in [9]. Also we remark that by extending the language of intuitionistic logic we can express the notion of expectation, an assertion that in all situations the truth of p is possible and that in a logic of expectations the law of double negation holds. Similarly, extending co-intuitionistic logic, we can express the notion of conjecture that p, dened as a hypothesis that in some situation the truth of p is epistemically necessary

    Finitary proof systems for Kozen’s μ.

    Get PDF
    We present three finitary cut-free sequent calculi for the modal [my]-calculus. Two of these derive annotated sequents in the style of Stirling’s ‘tableau proof system with names’ (4236) and feature special inferences that discharge open assumptions. The third system is a variant of Kozen’s axiomatisation in which cut is replaced by a strengthening of the v-induction inference rule. Soundness and completeness for the three systems is proved by establishing a sequence of embeddings between the calculi, starting at Stirling’s tableau-proofs and ending at the original axiomatisation of the [my]-calculus due to Kozen. As a corollary we obtain a completeness proof for Kozen’s axiomatisation which avoids the usual detour through automata or games

    Proofs and Refutations for Intuitionistic and Second-Order Logic

    Get PDF
    The ?^{PRK}-calculus is a typed ?-calculus that exploits the duality between the notions of proof and refutation to provide a computational interpretation for classical propositional logic. In this work, we extend ?^{PRK} to encompass classical second-order logic, by incorporating parametric polymorphism and existential types. The system is shown to enjoy good computational properties, such as type preservation, confluence, and strong normalization, which is established by means of a reducibility argument. We identify a syntactic restriction on proofs that characterizes exactly the intuitionistic fragment of second-order ?^{PRK}, and we study canonicity results

    Refining Constructive Hybrid Games

    Get PDF

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established
    • …
    corecore