18 research outputs found

    Intrusion detection in IPv6-enabled sensor networks.

    Get PDF
    In this research, we study efficient and lightweight Intrusion Detection Systems (IDS) for ad-hoc networks through the lens of IPv6-enabled Wireless Sensor Actuator Networks. These networks consist of highly constrained devices able to communicate wirelessly in an ad-hoc fashion, thus following the architecture of ad-hoc networks. Current state of the art IDS in IoT and WSNs have been developed considering the architecture of conventional computer networks, and as such they do not efficiently address the paradigm of ad-hoc networks, which is highly relevant in emerging network paradigms, such as the Internet of Things (IoT). In this context, the network properties of resilience and redundancy have not been extensively studied. In this thesis, we first identify a trade-off between the communication and energy overheads of an IDS (as captured by the number of active IDS agents in the network) and the performance of the system in terms of successfully identifying attacks. In order to fine-tune this trade-off, we model networks as Random Geometric Graphs; these are a rigorous approach that allows us to capture underlying structural properties of the network. We then introduce a novel IDS architectural approach that consists of a central IDS agent and set of distributed IDS agents deployed uniformly at random over the network area. These nodes are able to efficiently detect attacks at the networking layer in a collaborative manner by monitoring locally available network information provided by IoT routing protocols, such as RPL. The detailed experimental evaluation conducted in this research demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates. We also show that the performance of our IDS in ad-hoc networks does not rely on the size of the network but on fundamental underling network properties, such as the network topology and the average degree of the nodes. The experiments show that our proposed IDS architecture is resilient against frequent topology changes due to node failures

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodesļæ½ resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Abstracting Application Development for Resource Constrained Wireless Sensor Networks

    Get PDF
    Ubiquitous computing is a concept whereby computing is distributed across smart objects surrounding users, creating ambient intelligence. Ubiquitous applications use technologies such as the Internet, sensors, actuators, embedded computers, wireless communication, and new user interfaces. The Internet-of-Things (IoT) is one of the key concepts in the realization of ubiquitous computing, whereby smart objects communicate with each other and the Internet. Further, Wireless Sensor Networks (WSNs) are a sub-group of IoT technologies that consist of geographically distributed devices or nodes, capable of sensing and actuating the environment.WSNs typically contain tens to thousands of nodes that organize and operate autonomously to perform application-dependent sensing and sensor data processing tasks. The projected applications require nodes to be small in physical size and low-cost, and have a long lifetime with limited energy resources, while performing complex computing and communications tasks. As a result, WSNs are complex distributed systems that are constrained by communications, computing and energy resources. WSN functionality is dynamic according to the environment and application requirements. Dynamic multitasking, task distribution, task injection, and software updates are required in ļ¬eld experiments for possibly thousands of nodes functioning in harsh environments.The development of WSN application software requires the abstraction of computing, communication, data access, and heterogeneous sensor data sources to reduce the complexities. Abstractions enable the faster development of new applications with a better reuse of existing software, as applications are composed of high-level tasks that use the services provided by the devices to execute the application logic.The main research question of this thesis is: What abstractions are needed for application development for resource constrained WSNs? This thesis models WSN abstractions with three levels that build on top of each other: 1) node abstraction, 2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides the details in the use of the sensing, communication, and processing hardware. The network abstraction speciļ¬es methods of discovering and accessing services, and distributing processing in the network. The infrastructure abstraction uniļ¬es different sensing technologies and infrastructure computing platforms.As a contribution, this thesis presents the abstraction model with a review of each abstraction level. Several designs for each of the levels are tested and veriļ¬ed with proofs of concept and analyses of ļ¬eld experiments. The resulting designs consist of an operating system kernel, a software update method, a data uniļ¬cation interface, and all abstraction levels combining abstraction called an embedded cloud.The presented operating system kernel has a scalable overhead and provides a programming approach similar to a desktop computer operating system with threads and processes. An over-the-air update method combines low overhead and robust software updating with application task dissemination. The data uniļ¬cation interface homogenizes the access to the data of heterogeneous sensor networks. A uniļ¬cation model is used for various use cases by mapping everything as measurements. The embedded cloud allows resource constrained WSNs to share services and data, and expand resources with other technologies. The embedded cloud allows the distributed processing of applications according to the available services. The applications are implemented as processes using a hardware independent description language that can be executed on resource constrained WSNs. The lessons of practical ļ¬eld experimenting are analyzed to study the importance of the abstractions. Software complexities encountered in the ļ¬eld experiments highlight the need for suitable abstractions.The results of this thesis are tested using proof of concept implementations on real WSN hardware which is constrained by computing power in the order of a few MIPS, memory sizes of a few kilobytes, and small sized batteries. The results will remain usable in the future, as the vast amount, tight integration, and low-cost of future IoT devices require the combination of complex computation with resource constrained platforms

    Abstracting Application Development for Resource Constrained Wireless Sensor Networks

    Get PDF
    Ubiquitous computing is a concept whereby computing is distributed across smart objects surrounding users, creating ambient intelligence. Ubiquitous applications use technologies such as the Internet, sensors, actuators, embedded computers, wireless communication, and new user interfaces. The Internet-of-Things (IoT) is one of the key concepts in the realization of ubiquitous computing, whereby smart objects communicate with each other and the Internet. Further, Wireless Sensor Networks (WSNs) are a sub-group of IoT technologies that consist of geographically distributed devices or nodes, capable of sensing and actuating the environment.WSNs typically contain tens to thousands of nodes that organize and operate autonomously to perform application-dependent sensing and sensor data processing tasks. The projected applications require nodes to be small in physical size and low-cost, and have a long lifetime with limited energy resources, while performing complex computing and communications tasks. As a result, WSNs are complex distributed systems that are constrained by communications, computing and energy resources. WSN functionality is dynamic according to the environment and application requirements. Dynamic multitasking, task distribution, task injection, and software updates are required in ļ¬eld experiments for possibly thousands of nodes functioning in harsh environments.The development of WSN application software requires the abstraction of computing, communication, data access, and heterogeneous sensor data sources to reduce the complexities. Abstractions enable the faster development of new applications with a better reuse of existing software, as applications are composed of high-level tasks that use the services provided by the devices to execute the application logic.The main research question of this thesis is: What abstractions are needed for application development for resource constrained WSNs? This thesis models WSN abstractions with three levels that build on top of each other: 1) node abstraction, 2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides the details in the use of the sensing, communication, and processing hardware. The network abstraction speciļ¬es methods of discovering and accessing services, and distributing processing in the network. The infrastructure abstraction uniļ¬es different sensing technologies and infrastructure computing platforms.As a contribution, this thesis presents the abstraction model with a review of each abstraction level. Several designs for each of the levels are tested and veriļ¬ed with proofs of concept and analyses of ļ¬eld experiments. The resulting designs consist of an operating system kernel, a software update method, a data uniļ¬cation interface, and all abstraction levels combining abstraction called an embedded cloud.The presented operating system kernel has a scalable overhead and provides a programming approach similar to a desktop computer operating system with threads and processes. An over-the-air update method combines low overhead and robust software updating with application task dissemination. The data uniļ¬cation interface homogenizes the access to the data of heterogeneous sensor networks. A uniļ¬cation model is used for various use cases by mapping everything as measurements. The embedded cloud allows resource constrained WSNs to share services and data, and expand resources with other technologies. The embedded cloud allows the distributed processing of applications according to the available services. The applications are implemented as processes using a hardware independent description language that can be executed on resource constrained WSNs. The lessons of practical ļ¬eld experimenting are analyzed to study the importance of the abstractions. Software complexities encountered in the ļ¬eld experiments highlight the need for suitable abstractions.The results of this thesis are tested using proof of concept implementations on real WSN hardware which is constrained by computing power in the order of a few MIPS, memory sizes of a few kilobytes, and small sized batteries. The results will remain usable in the future, as the vast amount, tight integration, and low-cost of future IoT devices require the combination of complex computation with resource constrained platforms

    Solutions for large scale, efficient, and secure Internet of Things

    Get PDF
    The design of a general architecture for the Internet of Things (IoT) is a complex task, due to the heterogeneity of devices, communication technologies, and applications that are part of such systems. Therefore, there are significant opportunities to improve the state of the art, whether to better the performance of the system, or to solve actual issues in current systems. This thesis focuses, in particular, on three aspects of the IoT. First, issues of cyber-physical systems are analysed. In these systems, IoT technologies are widely used to monitor, control, and act on physical entities. One of the most important issue in these scenarios are related to the communication layer, which must be characterized by high reliability, low latency, and high energy efficiency. Some solutions for the channel access scheme of such systems are proposed, each tailored to different specific scenarios. These solutions, which exploit the capabilities of state of the art radio transceivers, prove effective in improving the performance of the considered systems. Positioning services for cyber-physical systems are also investigated, in order to improve the accuracy of such services. Next, the focus moves to network and service optimization for traffic intensive applications, such as video streaming. This type of traffic is common amongst non-constrained devices, like smartphones and augmented/virtual reality headsets, which form an integral part of the IoT ecosystem. The proposed solutions are able to increase the video Quality of Experience while wasting less bandwidth than state of the art strategies. Finally, the security of IoT systems is investigated. While often overlooked, this aspect is fundamental to enable the ubiquitous deployment of IoT. Therefore, security issues of commonly used IoT protocols are presented, together with a proposal for an authentication mechanism based on physical channel features. This authentication strategy proved to be effective as a standalone mechanism or as an additional security layer to improve the security level of legacy systems

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imageryā€”but global coverageā€”of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plantsā€”primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understandingā€”that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earthā€”just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequateā€”and globalā€”measures of what we are losing

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluatedā€”focusing particularly on plantsā€”using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    Big data-driven multimodal traffic management : trends and challenges

    Get PDF
    corecore