158 research outputs found

    Thermosonic flip chip interconnection using electroplated copper column arrays

    No full text
    Published versio

    Review of Direct Metal Bonding for Microelectronic Interconnections

    Get PDF
    Microelectronic interconnections require advanced joining techniques. Direct metal bonding methods, which include thercomsonic and thermocompression bonding, offer remarkable advantages over soldering and adhesives joining. These processes are reviewed in this paper. The progress made in this area is outlined. Some work concerned with the bonding modeling is also presented. This model is based on the joint interface mechanics resulting from compression. Both bump and substrate deformation are taken into account. The improved understanding of the relationship between the deformation and bonding formation may provide more accurate joint evaluation criterion.Singapore-MIT Alliance (SMA

    Effects of process parameters on bondability in thermosonic copper ball bonding

    Get PDF
    Thermosonic copper ball bonding is an absorbing interconnection technology that serves as a viable and cost saving alternative to gold ball bonding. Its excellent mechanical and electrical characteristics make copper ball bonding attractive for high-speed, power devices and fine-pitch applications. However, copper is easily oxidized and harder than gold, which causes some critical process problems in connection with bondability. In this study, a 50 mum copper wire with purity of 99.99% was bonded on aluminum metallization with thickness 3 mum using an ASM angle 60 automatic thermosonic ball/wedge bonder. Experimental studies of copper free air balls (FABs) formation and bonding process were conducted to establish the bonding mechanism and to explain the effects of process parameters on bondability. A micro-slipping model was proposed to account for the effects of the ultrasonic power and bonding force on bondability. It was found that the bondability was determined by a slip area at the bonding interface. The occurrence of bonding only at the periphery of the contact area between FAB and aluminum metallization was attributed to partial slips at the bonding interface. Variation in the ultrasonic power and bonding force that lead to different stick-slip modes, can effect bondability in the ultrasonic bonding process. It is important to set a proper bonding time to achieve interatomic bonding without causing fatigue rupture of microjoints. It was also found that preheating of the chip to a certain temperature can improve bondability

    Effect of thermal aging on interfacial behaviour of copper ball bonds

    Get PDF
    Thermosonic copper ball bonding is an interconnection technology that serves as a viable and cost-saving alternative to gold ball bonding. However, the reliability of copper bonds remains to be ascertained. Intermetallic compounds (IMCs) and possible voids and cracks may grow and propagate at the interface of bonds during their service. The proper IMCs formation is beneficial to bonding strength but an excessive growth of IMCs, voids and cracks can induce a mechanical failure and increase a contact resistance. In this study, a 99.99% copper wire with diameter 50.4 mum was bonded to a Al-1%Si-0.5%Cu metallisation pad by thermosonic bonding. Scanning electron microscopy, energy dispersive X-ray spectrometry, dual focused ion bean and transmission electron microscopy (TEM) were used to investigate the interfacial evolution of such formed joints during the thermal ageing, and kinetics of Cu-Al IMCs growth was established. The results showed no IMCs at the initial bonded Cu/Al interface. To study the Cu-Al IMCs growth, the samples were thermally aged for different times at a temperature from 200 degC to 300 degC to accelerate interfacial evolution. The growth of Cu-Al IMCs followed the parabolic law as a function of aging time at a certain aging temperature, and it is more sensitive to temperature compared to time. The activation energy of Cu-Al IMC growth was obtained from the Arrhenius plot. Voids and cracks, which are commonly present in gold ball bonds due to thermal aging, were not observed in copper ball bonds even after aging at 200 degC for 2900 hours. Finally, the structure of Cu-Al IMCs was confirmed to be Cu9Al4 by selected area electron diffraction with TEM

    A micromechanism study of thermosonic gold wire bonding on aluminum pad

    No full text
    A micromechanism of thermosonic gold wire bonding was elaborated by examining its interfacial characteristics as a result of the bonding process, including the fragmentation of the native aluminum oxide layer on Al pads, and formation of initial intermetallic compounds IMCs. It is found that the existence of an approximately 5 nm thick native oxide layer on original Al pads has a significant effect on the bonding, and the nucleation of IMCs during the bonding process must overcome this relatively inert thin film. Bonding strength was fundamentally determined by the degree of fragmentation of the oxide films, through which the formation of IMCs can be initiated due to the direct contact of the metal surfaces to be bonded. The extent of fracture the oxide layer was strongly influenced by the level of ultrasonic power, as at its high level alumina fragmentation becomes pervasive resulting in contiguous alloy interfaces and robust bonds. The IMCs formed at the interfaces were identified as Al₄Al and AuAl₂ with a thickness of 150–300 nm. The formation mechanism of such IMCs was explained by the effective heat of formation theory.This research was funded as a PMI2 Project Grant No. RC 41 through the UK Department for Innovation, Universities and Skills DIUS

    Dynamic Finite Element Analysis on Underlay Microstructure of Cu/low-k Wafer during Wirebonding

    Get PDF
    The aim of present research is to investigate dynamic stress analysis for microstructure of Cu/Low-K wafer subjected to wirebonding predicted by finite element software ANSYS/LS-DYNA. Two major analyses are conducted in the present research. In the first, the characteristic of heat affected zone (HAZ) and free air ball (FAB) on ultra thin Au wire have been carefully experimental measured. Secondary, the dynamic response on Al pad/beneath the pad of Cu/low-K wafer during wirebonding process has been successfully predicted by finite element analysis (FEA). Tensile mechanical properties of ultra thin wire before/after electric flame-off (EFO) process have been investigated by self-design pull test fixture. The experimental obtained hardening value has significantly influence on localize stressed area on Al pad. This would result in Al pad squeezing around the smashed FAB during impact stage and the consequent thermosonic vibration stage. Microstructure of FAB and HAZ are also carefully measured by micro/nano indentation instruments. All the measured data serves as material inputs for the FEA explicit software ANSYS/LS-DYNA. Because the crack of low-k layer and delamination of copper via are observed, dynamic transient analysis is performed to inspect the overall stress/strain distributions on the microstructure of Cu/low-k wafer. Special emphasizes are focused on the copper via layout and optimal design of Cu/low-k microstructure. It is also shown that the Al pad can be replaced by Al-Cu alloy pad or Cu pad to avoid large deformation on pad and cracking beneath the surface. A series of comprehensive experimental works and FEA predictions have been performed to increase bondability and reliability in this study

    A micromechanism study of thermosonic gold wire bonding on aluminum pad

    No full text
    A micromechanism of thermosonic gold wire bonding was elaborated by examining its interfacial characteristics as a result of the bonding process, including the fragmentation of the native aluminum oxide layer on Al pads, and formation of initial intermetallic compounds IMCs. It is found that the existence of an approximately 5 nm thick native oxide layer on original Al pads has a significant effect on the bonding, and the nucleation of IMCs during the bonding process must overcome this relatively inert thin film. Bonding strength was fundamentally determined by the degree of fragmentation of the oxide films, through which the formation of IMCs can be initiated due to the direct contact of the metal surfaces to be bonded. The extent of fracture the oxide layer was strongly influenced by the level of ultrasonic power, as at its high level alumina fragmentation becomes pervasive resulting in contiguous alloy interfaces and robust bonds. The IMCs formed at the interfaces were identified as Al₄Al and AuAl₂ with a thickness of 150–300 nm. The formation mechanism of such IMCs was explained by the effective heat of formation theory.This research was funded as a PMI2 Project Grant No. RC 41 through the UK Department for Innovation, Universities and Skills DIUS

    Developing the knowledge-based human resources that support the implementation of the National Dual Training System (NDTS): evaluation of TVET teacher's competency at MARA Training Institutions

    Get PDF
    Development in the world of technical and vocational education and training (TVET) on an ongoing basis is a challenge to the profession of the TVET-teachers to maintain their performance. The ability of teachers to identify the competencies required by their profession is very critical to enable them to make improvements in teaching and learning. For a broader perspective the competency needs of the labour market have to be matched by those developed within the vocational learning processes. Consequently, this study has focused on developing and validating the new empirical based TVET-teacher competency profile and evaluating teacher’s competency. This study combines both quantitative and qualitative research methodology that was designed to answer all the research questions. The new empirical based competency profile development and TVET-teacher evaluation was based upon an instructional design model. In addition, a modified Delphi technique has also been adopted throughout the process. Initially, 98 elements of competencies were listed by expert panel and rated by TVET institutions as important. Then, analysis using manual and statistical procedure found that 112 elements of competencies have emerged from seventeen (17) clusters of competencies. Prior to that, using the preliminary TVET-teacher competency profile, the level of TVETteacher competencies was found to be Proficient and the finding of 112 elements of competencies with 17 clusters was finally used to develop the new empirical based competency profile for MARA TVET-teacher. Mean score analysis of teacher competencies found that there were gaps in teacher competencies between MARA institutions (IKM) and other TVET institutions, where MARA-teacher was significantly better than other TVET teacher. ANOVA and t-test analysis showed that there were significant differences between teacher competencies among all TVET institutions in Malaysia. On the other hand, the study showed that teacher’s age, grade and year of experience are not significant predictors for TVET-teacher competency. In the context of mastering the competency, the study also found that three competencies are classified as most difficult or challenging, twelve competencies are classified as should be improved, and eight competencies are classified as needed to be trained. Lastly, to make NDTS implementation a reality for MARA the new empirical based competency profile and the framework for career development and training pathway were established. This Framework would serve as a significant tool to develop the knowledge based human resources needed. This will ensure that TVET-teachers at MARA are trained to be knowledgeable, competent, and professional and become a pedagogical leader on an ongoing basis towards a world class TVET-education system

    Mechanical and Tribological Aspects of Microelectronic Wire Bonding

    Get PDF
    The goal of this thesis is on improving the understanding of mechanical and tribological mechanisms in microelectronic wire bonding. In particular, it focusses on the development and application of quantitative models of ultrasonic (US) friction and interfacial wear in wire bonding. Another objective of the thesis is to develop a low-stress Cu ball bonding process that minimizes damage to the microchip. These are accomplished through experimental measurements of in situ US tangential force by piezoresistive microsensors integrated next to the bonding zone using standard complementary metal oxide semiconductor (CMOS) technology. The processes investigated are thermosonic (TS) Au ball bonding on Al pads (Au-Al process), TS Cu ball bonding on Al pads (Cu-Al process), and US Al wedge-wedge bonding on Al pads (Al-Al process). TS ball bonding processes are optimized with one Au and two Cu wire types, obtaining average shear strength (SS) of more than 120 MPa. Ball bonds made with Cu wire show at least 15% higher SS than those made with Au wire. However, 30% higher US force induced to the bonding pad is measured for the Cu process using the microsensor, which increases the risk of underpad damage. The US force can be reduced by: (i) using a Cu wire type that produces softer deformed ball results in a measured US force reduction of 5%; and (ii) reducing the US level to 0.9 times the conventionally optimized level, the US force can be reduced by 9%. It is shown that using a softer Cu deformed ball and a reduced US level reduces the extra stress observed with Cu wire compared to Au wire by 42%. To study the combined effect of bond force (BF) and US in Cu ball bonding, the US parameter is optimized for eight levels of BF. For ball bonds made with conventionally optimized BF and US settings, the SS is ≈ 140 MPa. The amount of Al pad splash extruding out of bonded ball interface (for conventionally optimized BF and US settings) is between 10–12 µm. It can be reduced to 3–7 µm if accepting a SS reduction to 50–70 MPa. For excessive US settings, elliptical shaped Cu bonded balls are observed, with the major axis perpendicular to the US direction. By using a lower value of BF combined with a reduced US level, the US force can be reduced by 30% while achieving an average SS of at least 120 MPa. These process settings also aid in reducing the amount of splash by 4.3 µm. The US force measurement is like a signature of the bond as it allows for detailed insight into the tribological mechanisms during the bonding process. The relative amount of the third harmonic of US force in the Cu-Al process is found to be five times smaller than in the Au-Al process. In contrast, in the Al-Al process, a large second harmonic content is observed, describing a non-symmetric deviation of the force signal waveform from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. The analysis of harmonics of the US force indicates that although slightly different from each other, stick-slip friction is an important mechanism in all these wire bonding variants. A friction power theory is used to derive the US friction power during Au-Al, Cu-Al, and Al-Al processes. Auxiliary measurements include the current delivered to the US transducer, the vibration amplitude of the bonding tool tip in free-air, and the US tangential force acting on the bonding pad. For bonds made with typical process parameters, several characteristic values used in the friction power model such as the ultrasonic compliance of the bonding system and the profile of the relative interfacial sliding amplitude are determined. The maximum interfacial friction power during Al-Al process is at least 11.5 mW (3.9 W/mm²), which is only about 4.8% of the total electrical power delivered to the US transducer. The total sliding friction energy delivered to the Al-Al wedge bond is 60.4 mJ (20.4 J/mm²). For the Au-Al and Cu-Al processes, the US friction power is derived with an improved, more accurate method to derive the US compliance. The method uses a multi-step bonding process. In the first two steps, the US current is set to levels that are low enough to prevent sliding. Sliding and bonding take place during the third step, when the current is ramped up to the optimum value. The US compliance values are derived from the first two steps. The average maximum interfacial friction power is 10.3 mW (10.8 W/mm²) and 16.9 mW (18.7 W/mm²) for the Au-Al and Cu-Al processes, respectively. The total sliding friction energy delivered to the bond is 48.5 mJ (50.3 J/mm²) and 49.4 mJ (54.8 J/mm²) for the Au-Al and Cu-Al processes, respectively. Finally, the sliding wear theory is used to derive the amount of interfacial wear during Au-Al and Cu-Al processes. The method uses the US force and the derived interfacial sliding amplitude as the main inputs. The estimated total average depth of interfacial wear in Au-Al and Cu-Al processes is 416 nm and 895 nm, respectively. However, the error of estimation of wear in both the Au-Al and the Cu-Al processes is ≈ 50%, making this method less accurate than the friction power and energy results. Given the error in the determination of compliance in the Al-Al process, the error in the estimation of wear in the Al-Al process might have been even larger; hence the wear results pertaining to the Al-Al process are not discussed in this study
    corecore