106 research outputs found

    Position-relative identities in the internet of things: An evolutionary GHT approach

    Get PDF
    The Internet of Things (IoT) will result in the deployment of many billions of wireless embedded systems creating interactive pervasive environments. It is envisaged that devices will cooperate to provide greater system knowledge than the sum of its parts. In an emergency situation, the flow of data across the IoT may be disrupted, giving rise to a requirement for machine-to-machine interaction within the remaining ubiquitous environment. Geographic hash tables (GHTs) provide an efficient mechanism to support fault-tolerant rendezvous communication between devices. However, current approaches either rely on devices being equipped with a GPS or being manually assigned an identity. This is unrealistic when the majority of these systems will be located inside buildings and will be too numerous to expect manual configuration. Additionally, when using GHT as a distributed data store, imbalance in the topology can lead to storage and routing overhead. This causes unfair work load, exhausting limited power supplies as well as causing poor data redundancy. To deal with these issues, we propose an approach that balances graph-based layout identity assignment, through the application of multifitness genetic algorithms. Our experiments show through simulation that our multifitness evolution technique improves on the initial graph-based layout, providing devices with improved balance and reachability metrics

    Routing protocol for V2X communications for Urban VANETs

    Get PDF
    Intelligent Transportation Systems (ITSs) have been attracting tremendous attention in both academia and industry due to emerging applications that pave the way towards safer enjoyable journeys and inclusive digital partnerships. Undoubtedly, these ITS applications will demand robust routing protocols that not only focus on Inter-Vehicle Communications but also on providing fast, reliable, and secure access to the infrastructure. This thesis aims mainly to introduce the challenges of data packets routing through urban environment using the help of infrastructure. Broadcasting transmission is an essential operational technique that serves a broad range of applications which demand different restrictive QoS provisioning levels. Although broadcast communication has been investigated widely in highway vehicular networks, it is undoubtedly still a challenge in the urban environment due to the obstacles, such as high buildings. In this thesis, the Road-Topology based Broadcast Protocol (RTBP) is proposed, a distance and contention-based forwarding scheme suitable for both urban and highway vehicular environments. RTBP aims at assigning the highest forwarding priority to a vehicle, called a mobile repeater, having the greatest capability to send the packet in multiple directions. In this way, RTBP effectively reduces the number of competing vehicles and minimises the number of hops required to retransmit the broadcast packets around the intersections to cover the targeted area. By investigating the RTBP under realistic urban scenarios against well-known broadcast protocols, eMDR and TAF, that are dedicated to retransmitting the packets around intersections, the results showed the superiority of the RTBP in delivering the most critical warning information for 90% of vehicles with significantly lower delay of 58% and 70% compared to eMDR and TAF. The validation of this performance was clear when the increase in the number of vehicles. Secondly, a Fast and Reliable Hybrid routing (FRHR) protocol is introduced for efficient infrastructure access which is capable of handling efficient vehicle to vehicle communications. Interface to infrastructure is provided by carefully placed RoadSide Units (RSUs) which broadcast beacons in a multi-hop fashion in constrained areas. This enables vehicles proactively to maintain fresh minimum-delay routes to other RSUs while reactively discovering routes to nearby vehicles. The proposed protocol utilizes RSUs connected to the wired backbone network to relay packets toward remote vehicles. A vehicle selects an RSU to register with according to the expected mean delay instead of the device’s remoteness. The FRHR performance is evaluated against established infrastructure routing protocols, Trafroute, IGSR and RBVT-R that are dedicated to for urban environment, the results showed an improvement of 20% to 33% in terms of packet delivery ratio and lower latency particularly in sparse networks due to its rapid response to changes in network connectivity. Thirdly, focusing on increasing FRHR’s capability to provide more stable and durable routes to support the QoS requirements of expected wide-range ITS applications on the urban environment, a new route selection mechanism is introduced, aiming at selecting highly connected crossroads. The new protocol is called, Stable Infrastructure Routing Protocol (SIRP). Intensive simulation results showed that SIRP offers low end-to-end delay and high delivery ratio with varying traffic density, while resolving the problem of frequent link failures

    Hybrid routing in delay tolerant networks

    Get PDF
    This work addresses the integration of today\\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Hybrid Routing in Delay Tolerant Networks

    Get PDF
    This work addresses the integration of today\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Mesh-Mon: a Monitoring and Management System for Wireless Mesh Networks

    Get PDF
    A mesh network is a network of wireless routers that employ multi-hop routing and can be used to provide network access for mobile clients. Mobile mesh networks can be deployed rapidly to provide an alternate communication infrastructure for emergency response operations in areas with limited or damaged infrastructure. In this dissertation, we present Dart-Mesh: a Linux-based layer-3 dual-radio two-tiered mesh network that provides complete 802.11b coverage in the Sudikoff Lab for Computer Science at Dartmouth College. We faced several challenges in building, testing, monitoring and managing this network. These challenges motivated us to design and implement Mesh-Mon, a network monitoring system to aid system administrators in the management of a mobile mesh network. Mesh-Mon is a scalable, distributed and decentralized management system in which mesh nodes cooperate in a proactive manner to help detect, diagnose and resolve network problems automatically. Mesh-Mon is independent of the routing protocol used by the mesh routing layer and can function even if the routing protocol fails. We demonstrate this feature by running Mesh-Mon on two versions of Dart-Mesh, one running on AODV (a reactive mesh routing protocol) and the second running on OLSR (a proactive mesh routing protocol) in separate experiments. Mobility can cause links to break, leading to disconnected partitions. We identify critical nodes in the network, whose failure may cause a partition. We introduce two new metrics based on social-network analysis: the Localized Bridging Centrality (LBC) metric and the Localized Load-aware Bridging Centrality (LLBC) metric, that can identify critical nodes efficiently and in a fully distributed manner. We run a monitoring component on client nodes, called Mesh-Mon-Ami, which also assists Mesh-Mon nodes in the dissemination of management information between physically disconnected partitions, by acting as carriers for management data. We conclude, from our experimental evaluation on our 16-node Dart-Mesh testbed, that our system solves several management challenges in a scalable manner, and is a useful and effective tool for monitoring and managing real-world mesh networks

    Location-aware mechanism for efficient video delivery over wireless mesh networks

    Get PDF
    Due to their flexibility, ease of use, low-cost and fast deployment, wireless Mesh Networks have been widely accepted as an alternative to wired network for last-mile connectivity. When used in conjunction with Peer-to-Peer data transfer solutions, many innovative applications and services such as distributed storage, resource sharing, live TV broadcasting or Video on Demand can be supported without any centralized administration. However, in order to achieve a good quality of service in such variable, error-prone and resource-constrained wireless multi-hop environments, it is important that the associated Peer-to-Peer overlay is not only aware of the availability, but also of the location and available path link quality of its peers and services. This thesis proposes a wireless location-aware Chord-based overlay mechanism for Wireless Mesh Networks (WILCO) based on a novel geographical multi-level ID mapping and an improved finger table. The proposed scheme exploits the location information of mesh routers to decrease the number of hops the overlay messages traverse in the physical topology. Analytical and simulation results demonstrate that in comparison to the original Chord, WILCO has significant benefits: it reduces the number of lookup messages, has symmetric lookup on keys in both the forward and backward direction of the Chord ring and achieves a stretch factor of O(1). On top of this location-aware overlay, a WILCO-based novel video segment seeking algorithm is proposed to make use of the multi-level WILCO ID location-awareness to locate and retrieve requested video segments from the nearest peer in order to improve video quality. An enhanced version of WILCO segment seeking algorithm (WILCO+) is proposed to mitigate the sometimes suboptimal selection of the WILCO video segment seeking algorithm by extracting coordinates from WILCO ID to enable location-awareness. Analytical and simulation results illustrate that the proposed scheme outperforms the existing state-of-the-art solutions in terms of PSNR and packet loss with different background traffic loads. While hop count is frequently strongly correlated to Quality of Service, the link quality of the underlying network will also have a strong influence on content retrieval quality. As a result, a Cross-layer Wireless Link Quality-aware Overlay peer selection mechanism (WLO) is proposed. The proposed cross-layer mechanism uses a Multiplication Selector Metric (MSM) to select the best overlay peer. The proposed MSM overcomes the two issues facing the traditional summation-based metric, namely, the difficulty of bottleneck link identification and the influence of hop count on behavior. Simulation results show that WLO outperforms the existing state-of-the-art solutions in terms of video quality at different background loads and levels of topology incompleteness. Real life emulation-based tests and subjective video quality assessments are also performed to show that the simulation results are closely matched by the real-life emulation-based results and to illustrate the significant impact of overlay peer selection on the user perceived video quality

    Context-aware collaborative storage and programming for mobile users

    Get PDF
    Since people generate and access most digital content from mobile devices, novel innovative mobile apps and services are possible. Most people are interested in sharing this content with communities defined by friendship, similar interests, or geography in exchange for valuable services from these innovative apps. At the same time, they want to own and control their content. Collaborative mobile computing is an ideal choice for this situation. However, due to the distributed nature of this computing environment and the limited resources on mobile devices, maintaining content availability and storage fairness as well as providing efficient programming frameworks are challenging. This dissertation explores several techniques to improve these shortcomings of collaborative mobile computing platforms. First, it proposes a medley of three techniques into one system, MobiStore, that offers content availability in mobile peer-to-peer networks: topology maintenance with robust connectivity, structural reorientation based on the current state of the network, and gossip-based hierarchical updates. Experimental results showed that MobiStore outperforms a state-of-the-art comparison system in terms of content availability and resource usage fairness. Next, the dissertation explores the usage of social relationship properties (i.e., network centrality) to improve the fairness of resource allocation for collaborative computing in peer-to-peer online social networks. The challenge is how to provide fairness in content replication for P2P-OSN, given that the peers in these networks exchange information only with one-hop neighbors. The proposed solution provides fairness by selecting the peers to replicate content based on their potential to introduce the storage skewness, which is determined from their structural properties in the network. The proposed solution, Philia, achieves higher content availability and storage fairness than several comparison systems. The dissertation concludes with a high-level distributed programming model, which efficiently uses computing resources on a cloud-assisted, collaborative mobile computing platform. This platform pairs mobile devices with virtual machines (VMs) in the cloud for increased execution performance and availability. On such a platform, two important challenges arise: first, pairing the two computing entities into a seamless computation, communication, and storage unit; and second, using the computing resources in a cost-effective way. This dissertation proposes Moitree, a distributed programming model and middleware that translates high-level programming constructs into events and provides the illusion of a single computing entity over the mobile-VM pairs. From programmers’ viewpoint, the Moitree API models user collaborations into dynamic groups formed over location, time, or social hierarchies. Experimental results from a prototype implementation show that Moitree is scalable, suitable for real-time apps, and can improve the performance of collaborating apps regarding latency and energy consumption
    corecore