408 research outputs found

    Dynare: Reference Manual Version 4

    Get PDF
    Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic general equilibrium (DSGE) and overlapping generations (OLG) models. The models solved by Dynare include those relying on the rational expectations hypothesis, wherein agents form their expectations about the future in a way consistent with the model. But Dynare is also able to handle models where expectations are formed differently: on one extreme, models where agents perfectly anticipate the future; on the other extreme, models where agents have limited rationality or imperfect knowledge of the state of the economy and, hence, form their expectations through a learning process. Dynare offers a user-friendly and intuitive way of describing these models. It is able to perform simulations of the model given a calibration of the model parameters and is also able to estimate these parameters given a dataset. Dynare is a free software, which means that it can be downloaded free of charge, that its source code is freely available, and that it can be used for both non-profit and for-profit purposes.Dynare; Numerical methods; Perturbation; Rational expectations

    Dynare: Reference Manual. Version 4

    Get PDF
    Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic general equilibrium (DSGE) and overlapping generations (OLG) models. The models solved by Dynare include those relying on the rational expectations hypothesis, wherein agents form their expectations about the future in a way consistent with the model. But Dynare is also able to handle models where expectations are formed differently: on one extreme, models where agents perfectly anticipate the future; on the other extreme, models where agents have limited rationality or imperfect knowledge of the state of the economy and, hence, form their expectations through a learning process. In terms of types of agents, models solved by Dynare can incorporate consumers, productive firms, governments, monetary authorities, investors and financial intermediaries. Some degree of heterogeneity can be achieved by including several distinct classes of agents in each of the aforementioned agent categories.JRC.G.3-Econometrics and applied statistic

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Automatic Main Road Extraction from High Resolution Satellite Imagery

    Get PDF
    Road information is essential for automatic GIS (geographical information system) data acquisition, transportation and urban planning. Automatic road (network) detection from high resolution satellite imagery will hold great potential for significant reduction of database development/updating cost and turnaround time. From so called low level feature detection to high level context supported grouping, so many algorithms and methodologies have been presented for this purpose. There is not any practical system that can fully automatically extract road network from space imagery for the purpose of automatic mapping. This paper presents the methodology of automatic main road detection from high resolution satellite IKONOS imagery. The strategies include multiresolution or image pyramid method, Gaussian blurring and the line finder using 1-dimemsional template correlation filter, line segment grouping and multi-layer result integration. Multi-layer or multi-resolution method for road extraction is a very effective strategy to save processing time and improve robustness. To realize the strategy, the original IKONOS image is compressed into different corresponding image resolution so that an image pyramid is generated; after that the line finder of 1-dimemsional template correlation filter after Gaussian blurring filtering is applied to detect the road centerline. Extracted centerline segments belong to or do not belong to roads. There are two ways to identify the attributes of the segments, the one is using segment grouping to form longer line segments and assign a possibility to the segment depending on the length and other geometric and photometric attribute of the segment, for example the longer segment means bigger possibility of being road. Perceptual-grouping based method is used for road segment linking by a possibility model that takes multi-information into account; here the clues existing in the gaps are considered. Another way to identify the segments is feature detection back-to-higher resolution layer from the image pyramid

    A Data-Analysis and Sensitivity-Optimization Framework for the KATRIN Experiment

    Get PDF
    Presently under construction, the Karlsruhe TRitium Neutrino (KATRIN) experiment is the next generation tritium beta-decay experiment to perform a direct kinematical measurement of the electron neutrino mass with an unprecedented sensitivity of 200 meV (90% C.L.). This thesis describes the implementation of a consistent data analysis framework, addressing technical aspects of the data taking process and statistical challenges of a neutrino mass estimation from the beta-decay electron spectrum

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques
    corecore