885 research outputs found

    Development of remote sensing technology in New Zealand, part 1. Seismotectonic, structural, volcanologic and geomorphic study of New Zealand, part 2. Indigenous forest assessment, part 3. Mapping land use and environmental studies in New Zealand, part 4. New Zealand forest service LANDSAT projects, part 5. Vegetation map and landform map of Aupouri Peninsula, Northland, part 6. Geographical applications of LANDSAT mapping, part 7

    Get PDF
    The author has identified the following significant results. Inspection of pixels obtained from LANDSAT of New Zealand revealed that not only can ships and their wakes be detected, but that information on the size, state of motion, and direction of movement was inferred by calculating the total number of pixels occupied by the vessel and wake, the orientation of these pixels, and the sum of their radiance values above the background level. Computer enhanced images showing the Waimihia State Forest and much of Kaingaroa State Forest on 22 December 1975 were examined. Most major forest categories were distinguished on LANDSAT imagery. However, the LANDSAT imagery seemed to be most useful for updating and checking existing forest maps, rather than making new maps with many forest categories. Snow studies were performed using two basins: Six Mile Creek and Mt. Robert. The differences in radiance levels indicated that a greater areal snow cover in Six Mile Creek Basin with the effect of lower radiance values from vegetation/snow regions. A comparison of the two visible bands (MSS 4 and 5) demonstrate this difference for the two basins

    A Landsat-based analysis of tropical forest dynamics in the Central Ecuadorian Amazon : Patterns and causes of deforestation and reforestation

    Get PDF
    Tropical deforestation constitutes a major threat to the Amazon rainforest. Monitoring forest dynamics is therefore necessary for sustainable management of forest resources in this region. However, cloudiness results in scarce good quality satellite observations, and is therefore a major challenge for monitoring deforestation and for detecting subtle processes such as reforestation. Furthermore, varying human pressure highlights the importance of understanding the underlying forces behind these processes at multiple scales but also from an interand transdisciplinary perspective. Against this background, this study analyzes and recommends different methodologies for accomplishing these goals, exemplifying their use with Landsat timeseries and socioeconomic data. The study cases were located in the Central Ecuadorian Amazon (CEA), an area characterized by different deforestation and reforestation processes and socioeconomic and landscape settings. Three objectives guided this research. First, processing and timeseries analysis algorithms for forest dynamics monitoring in areas with limited Landsat data were evaluated, using an innovative approach based in genetic algorithms. Second, a methodology based in image compositing, multisensor data fusion and postclassification change detection is proposed to address the limitations observed in forest dynamics monitoring with timeseries analysis algorithms. Third, the evaluation of the underlying driving forces of deforestation and reforestation in the CEA are conducted using a novel modelling technique called geographically weight ridge regression for improving processing and analysis of socioeconomic data. The methodology for forest dynamics monitoring demonstrates that despite abundant data gaps in the Landsat archive for the CEA, historical patterns of deforestation and reforestation can still be reported biennially with overall accuracies above 70%. Furthermore, the improved methodology for analyzing underlying driving forces of forest dynamics identified local drivers and specific socioeconomic settings that improved the explanations for the high deforestation and reforestation rates in the CEA. The results indicate that the proposed methodologies are an alternative for monitoring and analyzing forest dynamics, particularly in areas where data scarcity and landscape complexity require approaches that are more specialized.Landsat-basierte Analyse der Dynamik tropischer WĂ€lder im Zentral-Ecuadorianischen Amazonasgebiet: Muster und Ursachen von Abholzung und Wiederaufforstung Die tropische Entwaldung stellt eine große Bedrohung fĂŒr den AmazonasRegenwald dar. Daher ist die Überwachung von Walddynamiken eine notwendige Maßnahme, um eine nachhaltige Bewirtschaftung der Waldressourcen in dieser Region zu gewĂ€hrleisten. Jedoch verschlechtert Bewölkung die QualitĂ€t der Satellitenaufnahmen und stellt die hauptsĂ€chliche Herausforderung fĂŒr die Überwachung der Entwaldung sowie die Detektierung einhergehender Prozesse, wie der Wiederaufforstung, dar. DarĂŒber hinaus zeigt der unterschiedliche menschliche Nutzungsdruck, wie wichtig es ist, die zugrundeliegenden KrĂ€fte hinter diesen Prozessen auf mehreren Ebenen, aber auch interund transdisziplinĂ€r, zu verstehen. Variierender anthropogener Einfluss unterstreicht die Notwendigkeit, unterschwellige Prozesse (oder "Driver") auf multiplen Skalen aus interund transdisziplinĂ€rer Sicht zu verstehen. Darauf basierend analysiert und empfiehlt die vorliegende Studie unterschiedliche Methoden, welche unter Verwendung von LandsatZeitreihen und sozioökonomischen Daten zur Erreichung dieser Ziele beitragen. Die Untersuchungsgebiete befinden sich im ZentralEcuadorianischen Amazonasgebiet (CEA). Einem Gebiet, das einerseits durch differenzierte Entwaldungsund Aufforstungsprozesse, andererseits durch seine sozioökonomischen und landschaftlichen Gegebenheiten geprĂ€gt ist. Das Forschungsprojekt hat drei Zielvorgaben. Erstens werden auf genetischen Algorithmen basierten Verfahren zur Verarbeitung der Zeitreihenanalyse fĂŒr die Überwachung der Walddynamik in Gebieten, fĂŒr die nur begrenzte LandsatDaten vorhanden waren, bewertet. Zweitens soll eine Methode in Anlehnung an Satellitenbildkompositen, Datenfusion von mehreren Satellitenbildern und VerĂ€nderungsdetektion gefunden werden, die EinschrĂ€nkungen der Walddynamik durch Entwaldung mithilfe von ZeitreihenAlgorithmen thematisiert. Drittens werden die Ursachen der Entwaldung/Abholzung im CEA anhand der geographischen gewichteten RidgeRegression, die zur einen verbesserten Analyse der sozioökonomischen Information beitrĂ€gt, bewertet. Die Methodik fĂŒr das WalddynamikMonitoring zeigt, dass trotz umfangreicher DatenlĂŒcken im LandsatArchiv fĂŒr das CEA alle zwei Jahre die historischen Entwaldungsund Wiederaufforstungsmuster mit einer Genauigkeit von ĂŒber 70% gemeldet werden können. Eine verbesserte Analysemethode trĂ€gt außerdem dazu bei, die fĂŒr die Walddynamik verantwortlichen treibenden KrĂ€fte zu identifizieren, sowie lokale Treiber und spezifische sozioökonomische Rahmenbedingungen auszumachen, die eine bessere ErklĂ€rung fĂŒr die hohen Entwaldungsund Wiederaufforstungsraten im CEA aufzeigen. Die erzielten Ergebnisse machen deutlich, dass die vorgeschlagenen Methoden eine Alternative zum Monitoring und zur Analyse der Walddynamik darstellen; Insbesondere in Gebieten, in denen Datenknappheit und LandschaftskomplexitĂ€t spezialisierte AnsĂ€tze erforderlich machen

    Soil temperature investigations using satellite acquired thermal-infrared data in semi-arid regions

    Get PDF
    Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation

    Modelling patterns and drivers of post-fire forest effects through a remote sensing approach

    Get PDF
    Forests play a significant role in the global carbon budget as they are a major carbon sink. In addition to the deforestation caused by human activities, some forest ecosystems are experiencing detrimental changes in both quantity and quality due to wildfires and climate change that lead to the heterogeneity of forest landscapes. However, forest fires also play an ecological role in the process of forming and functioning of forest ecosystems by determining the rates and direction of forest stand recovery. This process is strongly associated with various biotic and abiotic factors such as: the disturbance regimes, the soil and vegetation properties, the topography, and the regional climatic conditions. However, the factors that influence forest-recovery patterns after a wildfire are poorly understood, especially at broad scales of the boreal forest ecosystems. The study purpose of this research is to use remote sensing approaches to model and evaluate forest patterns affected by fire regimes under various environmental and climatic conditions after wildfires. We hypothesized that the forest regeneration patterns and their driving factors after a fire can be measured using remote sensing approaches. The research focused on the post-fire environment and responses of a Siberian boreal larch (Larix sibirica) forest ecosystem. The integration of different remotely sensed data with field-based investigations permitted the analysis of the fire regime (e.g. burn area and burn severity), the forest recovery trajectory as well as the factors that control this process with multi temporal and spatial dimensions. Results show that the monitoring of post-fire effects of the burn area and burn severity can be conducted accurately by using the multi temporal MODIS and Landsat imagery. The mapping algorithms of burn area and burn severity not only overcome data limitations in remote and vast regions of the boreal forests but also account for the ecological aspects of fire regimes and vegetation responses to the fire disturbances. The remote sensing models of vegetation recovery trajectory and its driving factors reveal the key control of burn severity on the spatiotemporal patterns in a post-fire larch forest. The highest rate of larch forest recruitment can be found in the sites of moderate burn severity. However, a more severe burn is the preferable condition for the area occupied quickly by vegetation in an early successional stage including the shrubs, grasses, conifer and broadleaf trees (e.g. Betula platyphylla, Populus tremula, Salix spp., Picea obovata, Larix sibirica). In addition, the local landscape variables, water availability, solar insolation and pre-fire condition are also important factors controlling the process of post-fire larch forest recovery. The sites close to the water bodies, received higher amounts of solar energy during the growing season and a higher pre-fire normalized difference vegetation index (NDVI) showed higher regrowth rates of the larch forest. This suggests the importance of seed source and water-energy availability for the seed germination and growth in the post-fire larch forest. An understanding of the fire regimes, forest-recovery patterns and post-wildfire forest-regeneration driving factors will improve the management of sustainable forests by accelerating the process of forest resilience

    Monitoring Cloud-prone Complex Landscapes At Multiple Spatial Scales Using Medium And High Resolution Optical Data: A Case Study In Central Africa

    Get PDF
    Tracking land surface dynamics over cloud-prone areas with complex mountainous terrain and a landscape that is heterogeneous at a scale of approximately 10 m, is an important challenge in the remote sensing of tropical regions in developing nations, due to the small plot sizes. Persistent monitoring of natural resources in these regions at multiple spatial scales requires development of tools to identify emerging land cover transformation due to anthropogenic causes, such as agricultural expansion and climate change. Along with the cloud cover and obstructions by topographic distortions due to steep terrain, there are limitations to the accuracy of monitoring change using available historical satellite imagery, largely due to sparse data access and the lack of high quality ground truth for classifier training. One such complex region is the Lake Kivu region in Central Africa. This work addressed these problems to create an effective process for monitoring the Lake Kivu region located in Central Africa. The Lake Kivu region is a biodiversity hotspot with a complex and heterogeneous landscape and intensive agricultural development, where individual plot sizes are often at the scale of 10m. Procedures were developed that use optical data from satellite and aerial observations at multiple scales to tackle the monitoring challenges. First, a novel processing chain was developed to systematically monitor the spatio-temporal land cover dynamics of this region over the years 1988, 2001, and 2011 using Landsat data, complemented by ancillary data. Topographic compensation was performed on Landsat reflectances to avoid the strong illumination angle impacts and image compositing was used to compensate for frequent cloud cover and thus incomplete annual data availability in the archive. A systematic supervised classification, using the state-of-the-art machine learning classifier Random Forest, was applied to the composite Landsat imagery to obtain land cover thematic maps with overall accuracies of 90% and higher. Subsequent change analysis between these years found extensive conversions of the natural environment as a result of human related activities. The gross forest cover loss for 1988-2001 and 2001- 2011 periods was 216.4 and 130.5 thousand hectares, respectively, signifying significant deforestation in the period of civil war and a relatively stable and lower deforestation rate later, possibly due to conservation and reforestation efforts in the region. The other dominant land cover changes in the region were aggressive subsistence farming and urban expansion displacing natural vegetation and arable lands. Despite limited data availability, this study fills the gap of much needed detailed and updated land cover change information for this biologically important region of Central Africa. While useful on a regional scale, Landsat data can be inadequate for more detailed studies of land cover change. Based on an increasing availability of high resolution imagery and light detection and ranging (LiDAR) data from manned and unmanned aerial platforms (\u3c1m \u3eresolution), a study was performed leading to a novel generic framework for land cover monitoring at fine spatial scales. The approach fuses high spatial resolution aerial imagery and LiDAR data to produce land cover maps with high spatial detail using object-based image analysis techniques. The classification framework was tested for a scene with both natural and cultural features and was found to be more than 90 percent accurate, sufficient for detailed land cover change studies

    Investigating the impact of Tourism on forest cover in the Annapurna conservation area through Remote Sensing and Statistical Analysis

    Get PDF
    Tourism is Nepal’s largest industry giving people in rural areas an alternative to subsistence farming. Tourism can have an impact on the forest cover of a region as trees provide firewood for cooking and heating and timber for building accommodation. In 1986 the Annapurna conservation area project was started to ensure that tourism was managed sustainably, which includes minimising the impacts on the forest cover. This study assesses the impacts of tourism on the forest cover in the Annapurna region by comparing Landsat images from 1999 and 2011. This was achieved through spectral classification of different landcover and assessing the change in forest cover in relation to increasing distances from tourism villages. A major problem with remote sensing in mountainous regions such as Nepal is shadow caused by the relief. This issue was addressed by only assessing areas which were free from shadow, which in effect meant a sample was used rather than the whole study region. The results indicate that there has been an 8 per cent reduction in overall forest extent, but this change varies by region. In the northern drier regions there has been a net increase in forest cover, while in the southern regions there has been a net reduction in forests. The influence of tourism facilities on forest is also variable. Around each of the sample tourism villages there was a general trend of decreasing removal of forest at greater distances from each village, which indicates tourism does have a negative impact on forests. However, there was an opposite trend in the northern villages that were well inside the conservation area

    Revisiting the Past: Replicability of a Historic Long-Term Vegetation Dynamics Assessment in the Era of Big Data Analytics

    Get PDF
    Open and analysis-ready data, as well as methodological and technical advancements have resulted in an unprecedented capability for observing the Earth’s land surfaces. Over 10 years ago, Landsat time series analyses were inevitably limited to a few expensive images from carefully selected acquisition dates. Yet, such a static selection may have introduced uncertainties when spatial or inter-annual variability in seasonal vegetation growth were large. As seminal pre-open-data-era papers are still heavily cited, variations of their workflows are still widely used, too. Thus, here we quantitatively assessed the level of agreement between an approach using carefully selected images and a state-of-the-art analysis that uses all available images. We reproduced a representative case study from the year 2003 that for the first time used annual Landsat time series to assess long-term vegetation dynamics in a semi-arid Mediterranean ecosystem in Crete, Greece. We replicated this assessment using all available data paired with a time series method based on land surface phenology metrics. Results differed fundamentally because the volatile timing of statically selected images relative to the phenological cycle introduced systematic uncertainty. We further applied lessons learned to arrive at a more nuanced and information-enriched vegetation dynamics description by decomposing vegetation cover into woody and herbaceous components, followed by a syndrome-based classification of change and trend parameters. This allowed for a more reliable interpretation of vegetation changes and even permitted us to disentangle certain land-use change processes with opposite trajectories in the vegetation components that were not observable when solely analyzing total vegetation cover. The long-term budget of net cover change revealed that vegetation cover of both components has increased at large and that this process was mainly driven by gradual processes. We conclude that study designs based on static image selection strategies should be critically evaluated in the light of current data availability, analytical capabilities, and with regards to the ecosystem under investigation. We recommend using all available data and taking advantage of phenology-based approaches that remove the selection bias and hence reduce uncertainties in results.Peer Reviewe

    Assessing post-fire forest structure recovery by combining LiDAR data and Landsat time series in Mediterranean pine forests

    Get PDF
    Understanding post-fire recovery dynamics is critical for effective management that enhance forest resilience to fire. Mediterranean pine forests have been largely affected by wildfires, but the impacts of both changes in land use and climate endanger their capacity to naturally recover. Multispectral imagery is commonly used to estimate post-fire recovery, yet changes in forest structure must be considered for a comprehensive evaluation of forest recovery. In this research, we combine Light Detection And Ranging (LiDAR) with Landsat imagery to extrapolate forest structure variables over a 30-year period (1990?2020) to provide insights on how forest structure has recovered after fire in Mediterranean pine forests. Forest recovery was evaluated attending to vegetation cover (VC), tree cover (TC), mean height (MH) and heterogeneity (CVH). Structure variables were derived from two LiDAR acquisitions from 2016 and 2009, for calibration and independent spatial and temporal validation. A Support Vector Regression model (SVR) was calibrated to extrapolate LiDAR-derived variables using a series of Landsat imagery, achieving an R2 of 0.78, 0.64, 0.70 and 0.63, and a relative RMSE of 24.4%, 30.2%, 36.5% and 27.4% for VC, TC, MH and CVH, respectively. Models showed to be consistent in the temporal validation, although a wider variability was observed, with R2 ranging from 0.51 to 0.74. A different response to fire was revealed attending to forest cover and height since vegetation cover recovered to a pre-fire state but mean height did not 26-years after fire. Less than 50% of the area completely recovered to the pre-fire structure within 26 years, and the area subjected to fire recurrence showed signs of greater difficulty in initiating the recovery. Our results provide valuable information on forest structure recovery, which can support the implementation of mitigation and adaptation strategies that enhance fire resilience.Comunidad de Madri

    Vegetation Dynamics in Ecuador

    Get PDF
    Global forest cover has suffered a dramatic reduction during recent decades, especially in tropical regions, which is mainly due to human activities caused by enhanced population pressures. Nevertheless, forest ecosystems, especially tropical forests, play an important role in the carbon cycle functioning as carbon stocks and sinks, which is why conservation strategies are of utmost importance respective to ongoing global warming. In South America the highest deforestation rates are observed in Ecuador, but an operational surveillance system for continuous forest monitoring, along with the determination of deforestation rates and the estimation of actual carbon socks is still missing. Therefore, the present investigation provides a functional tool based on remote sensing data to monitor forest stands at local, regional and national scales. To evaluate forest cover and deforestation rates at country level satellite data was used, whereas LiDAR data was utilized to accurately estimate the Above Ground Biomass (AGB; carbon stocks) at catchment level. Furthermore, to provide a cost-effective tool for continuous forest monitoring of the most vulnerable parts, an Unmanned Aerial Vehicle (UAV) was deployed and equipped with various sensors (RBG and multispectral camera). The results showed that in Ecuador total forest cover was reduced by about 24% during the last three decades. Moreover, deforestation rates have increased with the beginning of the new century, especially in the Andean Highland and the Amazon Basin, due to enhanced population pressures and the government supported oil and mining industries, besides illegal timber extractions. The AGB stock estimations at catchment level indicated that most of the carbon is stored in natural ecosystems (forest and pĂĄramo; AGB ~98%), whereas areas affected by anthropogenic land use changes (mostly pastureland) lost nearly all their storage capacities (AGB ~2%). Furthermore, the LiDAR data permitted the detection of the forest structure, and therefore the identification of the most vulnerable parts. To monitor these areas, it could be shown that UAVs are useful, particularly when equipped with an RGB camera (AGB correlation: RÂČ > 0.9), because multispectral images suffer saturation of the spectral bands over dense natural forest stands, which results in high overestimations. In summary, the developed operational surveillance systems respective to forest cover at different spatial scales can be implemented in Ecuador to promote conservation/ restoration strategies and to reduce the high deforestation rates. This may also mitigate future greenhouse gas emissions and guarantee functional ecosystem services for local and regional populations
    • 

    corecore