59 research outputs found

    The Finite Element Analysis of Weak Spots in Interconnects and Packages

    Get PDF

    Study of Tantalum nitride diffusion barrier films for coppper interconnect technology

    Get PDF
    As technology progressed to ultra - large scale integration leading to smaller and smaller devices, there are continuous challenges in the fields of materials, processes and circuit designs. Copper is the interconnect material of choice because of its low electrical resistivity and high electromigration resistance. However, copper is quite mobile in silicon at elevated temperatures. Therefore, to prevent the diffusion of copper into silicon, a diffusion barrier layer that has fewer grain boundaries, good adhesion to Si and Si02, high thermal and electrical stability with respect to Cu is necessary. Tantalum nitride compounds have been investigated as potential barrier materials. TaN has a very high melting point of 2950C. It is thermodynamically stable with respect to Cu and has good adhesion to the substrate. It has a dense microstructure and shows good resistance to heavy mobility of Cu in Si and has electrical stability at temperatures upto 750 C. The diffusion barrier properties of Ta and its nitrides for copper metallization at RIT have been investigated. The TaNx films were reactively sputter deposited on Si02 substrates at various N2/AJ- ratios. The influence of nitrogen partial pressure on the electrical and structural properties of the films is studied. It has been observed that as deposited pure Ta is tetragonal, which becomes bcc-Ta with small increase in N2 flow to 5% of the sputtering gas mixture. When the nitrogen flow is increased from 12 up to 20%, amorphous and a mixture of amorphous and crystalline Ta2N phase is formed. The amorphous phase crystallizes when annealed to higher temperatures. An fee- TaN phase is formed at N2 flow of 30%. At higher concentrations of N2; nitrogen rich compounds like Ta5N6, Ta3N5 are formed. During backend semiconductor processing, both Cu and TaN films are subjected to various annealing treatments in N2, 02, and Ar at relatively high temperatures. Since these treatments influence the stability of the metallization it was important to establish the effect of the ambients on the integrity of the copper interconnect. The Cu/TaN/Si02 films were annealed to various temperatures up to 600 C in N2, Ar ambients for 20 min and the thermal stability and barrier effectiveness of the films was studied. Annealing the films to temperatures above 500 C cause de-lamination of films at the Cu/TaN interface, which is attributed to the formation of copper oxides with a high density of voids. This was observed by XRD analyis and SEM. RBS spectra showed diffusion of tantalum into the surface of copper at temperatures ~ 500 to 600 C. Therefore we can conclude that cubic TaN films act as stable barrier films up to 500 C in an inert ambient

    Effects of sputter deposition parameters on stress in tantalum films with applications to chemical mechanical planarization of copper

    Get PDF
    Attempts to introduce a CMP process for copper damascene features at Rochester Institute of Technology were stymied by adhesion failures of the Ta/Cu film stack. This work was undertaken to investigate the effect of stress in the films on adhesion and to develop a viable CMP process for Cu damascene technology. In depth studies of stress as a function of sputter deposition conditions revealed that stress in Ta layers could vary from -1700 MPa compression to +800 MPa tensile for deposition pressures over a range of 2-20 mTorr for films having a nominal thickness of 0.25 μm. For a fixed pressure, stress could vary from -1500 to +800 MPa for thicknesses ranging from 24 to 225 nm. More importantly, target aging was shown to result in a change in stress for fixed deposition parameters, such as pressure and power. Control of the stress in these films is critical as a substantial difference in CMP removal rates for tantalum films having -400 to -1200 MPa of compressive stress was observed. In addition, the top copper layer will adhere to Ta films in a specific range of compressive stress. A 50 nm film stack of TaN/Ta with varying thickness ratios of the two metals was fabricated that exhibited nearly constant compressive stress. This deposition process for the TaN/Ta barrier layer was developed utilizing fixed voltage, not power as the deposition parameter. These studies resulted in a sputter process for TaN/Ta/Cu that exhibited good adhesion to SiO2, both for blanket and patterned films. A copper damascene process has been developed using a film system that adhered well to SiO2. Wafers were characterized for planarity both within die and within wafer, as well as wafer-to-wafer. The most promising deposition and polish processes were employed to produce a metal gate metal oxide semiconductor (MOS) capacitor and characterized by measuring the maximum electric field of the gate oxide before it would break down. The planarized damascene features were achieved that exhibited ≤ 30 nm of topology as viewed by profilometery and AFM. Results of breakdown studies of MOS capacitors were confounded by particulate effects, but the capacitors produced by CMP were on par with sputtered films patterned by photolithography. I would like to express my gratitude to Dr. Michael Jackson for taking me on as his graduate student and for his guidance throughout this project. I am grateful for Dr. Santosh Kurinec, Dr. Richard Lane and Dr. Christopher Hoople for being on my thesis committee and being willing to donate time to answer my questions. I acknowledge Dr. Tom Blanton for his generous donation of XRD analysis and expertise. I also appreciate the help of Daniel Brown for writing a program to perform stress calculations. This endeavor saved a significant amount of time. I give my most sincere appreciation to my father for providing help in numerous ways

    Estudo da eletromigração em circuitos integrados na fase de projeto

    Get PDF
    Orientadores: Roberto Lacerda de Orio, Leandro Tiago ManeraTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O dano por eletromigração nas interconexões é um gargalo bem conhecido dos circuitos integrados, pois causam problemas de confiabilidade. A operação em temperaturas e densidades de corrente elevadas acelera os danos, aumentando a resistência da interconexão e, portanto, reduzindo a vida útil do circuito. Este problema tem se acentuado com o escalonamento da tecnologia. Para garantir a confiabilidade da interconexão e, como consequência, a confiabilidade do circuito integrado, métodos tradicionais baseados no chamado Efeito Blech e numa densidade de corrente máxima permitida são implementados durante o projeto da interconexão. Esses métodos, no entanto, não levam em consideração o impacto da eletromigração no desempenho do circuito. Neste trabalho, a abordagem tradicional é estendida e um método para avaliar o efeito da eletromigração no desempenho de circuito integrado é desenvolvido. O método é implementado em uma ferramenta que identifica as interconexões críticas em um circuito integrado e sugere larguras adequadas com base em diferentes critérios para mitigar os danos à eletromigração e aumentar a confiabilidade. Além disso, é determinada a variação dos parâmetros de desempenho do circuito conforme a resistência das interconexões aumenta. A ferramenta é incorporada ao fluxo de projeto do circuito integrado e usa os dados dos kits de projeto e relatórios diretamente disponíveis no ambiente de projeto. Uma análise precisa da distribuição de temperatura na estrutura de interconexão é essencial para uma melhor avaliação da confiabilidade da interconexão. Portanto, é implementado um modelo para calcular a temperatura em cada nível de metalização da estrutura de interconexão. A distribuição de temperatura nas camadas de metalização de diferentes tecnologias é investigada. É mostrado que a temperatura no Metal 1 da tecnologia Intel 10 nm aumenta 75 K, 12 K mais alta que no Metal 2. Como esperado, as camadas mais próximas dos transistores sofrem um aumento de temperatura mais significativo. A ferramenta é aplicada para avaliar eletromigração nas interconexões e na robustez de diferentes circuitos, como um oscilador em anel, um circuito gerador de tensão de referência tipo bandgap e um amplificador operacional. O amplificador operacional, em particular, é cuidadosamente estudado. A metodologia proposta identifica interconexões críticas que quando danificadas por eletromigração causam grandes variações no desempenho do circuito. No pior cenário, a frequência de corte do circuito varia 65% em 5 anos de operação. Uma descoberta interessante é que a metodologia proposta identifica interconexões críticas que não seriam identificadas pelos critérios tradicionais. Essas interconexões operam com densidades de corrente abaixo do limite recomendado pelas regras de projeto. No entanto, uma dessas interconexões leva a uma variação de 30% no ganho do amplificador operacional. Em resumo, a ferramenta proposta verificou que dos 20% de caminhos com uma densidade crítica de corrente, apenas 3% degradam significativamente o desempenho do circuito. Este trabalho traz o estudo da confiabilidade das interconexões e de circuitos integrados para a fase de projeto, o que permite avaliar a degradação do desempenho do circuito antecipadamente durante o seu desenvolvimento. A ferramenta desenvolvida permite ao projetista identificar interconexões críticas que não seriam detectadas usando o critério de densidade máxima de corrente, levando a uma análise mais ampla e precisa da robustez de circuitos integradosAbstract: Electromigration damage in interconnects is a well-known bottleneck of integrated circuits, because it causes reliability problems. Operation at high temperatures and current densities accelerates the damage, increasing the interconnect resistance and, therefore, reducing the circuit lifetime. This issue has been accentuated with the technology downscaling. To guarantee the interconnect reliability and, as a consequence, the integrated circuit reliability, traditional methods based on the so-called Blech Effect and on the maximum allowed current density are implemented during interconnect design. These methods, however, do not take into account the impact of the electromigration on the circuit performance. In this work the traditional approach is extended and a method to evaluate the effect of the electromigration in an integrated circuit performance is developed. The method is implemented in a tool which identifies the critical interconnect lines of an integrated circuit and suggests the proper interconnect width based on different criteria to mitigate the electromigration damage and to increase the reliability. In addition, the variation of performance parameters of the circuit as an interconnect resistance changes is determined. The tool is incorporated into the design flow of the integrated circuit and uses the data from design kits and reports directly available from the design environment. An accurate analysis of the temperature distribution on the interconnect structure is essential to a better assessment of the interconnect reliability. Therefore, a model to compute the temperature on each metallization level of the interconnect structure is implemented. The temperature distribution on the metallization layers of different technologies is investigated. It is shown that the temperature in the Metal 1 of the Intel 10 nm can increase by 75 K, 12 K higher than in the Metal 2. As expected, the layers that are closer to the transistors undergo a more significant temperature increase. The tool is applied to evaluate the interconnects and the robustness of different circuits, namely a ring oscillator, a bandgap voltage reference circuit, and an operational amplifier, against electromigration. The operational amplifier, in particular, is thoroughly studied. The proposed methodology identifies critical interconnects which under electromigration cause large variations in the performance of the circuit. In a worst-case scenario, the cutoff frequency of the circuit varies by 65% in 5 years of operation. An interesting finding is that the proposed methodology identifies critical interconnects which would not be identified by the traditional criteria. These interconnects have current densities below the limit recommended by the design rules. Nevertheless, one of such an interconnect leads to a variation of 30% in the gain of the operational amplifier. In summary, the proposed tool verified that from the 20% paths with a critical current density, only 3% degrades significantly the circuit performance. This work brings the study of the reliability of the interconnects and of integrated circuits to the design phase, which provides the assessment of a circuit performance degradation at an early stage of development. The developed tool allows the designer to identify critical interconnects which would not be detected using the maximum current density criterion, leading to more accurate analysis of the robustness of integrated circuitsDoutoradoEletrônica, Microeletrônica e OptoeletrônicaDoutor em Engenharia Elétrica88882.329437/2019-01CAPE

    Intra-level dielectric reliability in deep sub-micron copper interconnects

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore