329 research outputs found

    Ischemic Stroke Thrombus Characterization through Quantitative Magnetic Resonance Imaging

    Get PDF
    Stroke is a pervasive, devastating disease and remains one of the most challenging conditions to treat. In particular, risk of recurrence is dramatically heightened after a primary stroke and requires urgent preventative therapy to effectively mitigate. However, the appropriate preventative therapy depends on the underlying source of the stroke, known as etiology, which is challenging to determine promptly. Current diagnostic tests for determining etiology underwhelm in both sensitivity and specificity, and in as much as 35% of cases etiology is never determined. In ischemic stroke, the composition of the occluding thrombus, specifically its red blood cell (RBC) content, has been shown to be indicative of etiology but remains largely ignored within clinical practice. Currently, composition can only be quantified through histological analysis, an involved process that can be completed in only the minority of cases where a thrombus has been physically retrieved from the patient during treatment. The goal of this thesis is to develop a quantitative MR imaging method which is capable of non-invasive prediction of ischemic stroke etiology through assessment of thrombus RBC content. To achieve this goal, we employed quantitative MR parameters that are sensitive to both RBC content and oxygenation, R2* and quantitative susceptibility mapping (QSM), as well as fat fraction (FF) mapping, and evaluated the ability of modern artificial intelligence techniques to form predictions of RBC content and etiology based on these quantitative MR parameters alone and in combination with patient clinical data. First, we performed an in vitro blood clot imaging experiment, which sought to explicitly define the relationship between clot RBC content, oxygenation and our quantitative MR parameters. We show that both R2* and QSM are sensitive to RBC content and oxygenation, as expected, and that the relationship between R2* and QSM can be used to predict clot RBC content independent of oxygenation status, a necessary step for stroke thrombus characterization where oxygenation is an unknown quantity. Second, we trained a deep convolutional neural network to predict histological RBC content from ex vivo MR images of ischemic stroke thrombi. We demonstrate that a convolutional neural network is capable of RBC content prediction with 66% accuracy and 8% mean absolute error when trained on a limited thrombus dataset, and that prediction accuracy can be improved to up to 74% through data augmentation. Finally, we used a random forest classifier to predict clinical stroke etiology using the same ex vivo thrombus MR image dataset. Here, quantitative thrombus R2*, QSM and FF image texture features were used to train the classifier, and we demonstrate that this method is capable of accurate etiology prediction from thrombus texture information alone (accuracy = 67%, area under the curve (AUC) = 0.68), but that when combined with patient clinical data the performance of the classifier improves dramatically to an accuracy and AUC of 93% and 0.89, respectively. Together, the works presented in this thesis offer extensive ex vivo evidence that quantitative MR imaging is capable of effective stroke thrombus etiology characterization. Such a technique could enable clinical consideration of thrombus composition and bolster stroke etiology determination, thereby improving the management and care of acute ischemic stroke patients

    Development and assessment of learning-based vessel biomarkers from CTA in ischemic stroke

    Get PDF

    Computational Modeling for Abnormal Brain Tissue Segmentation, Brain Tumor Tracking, and Grading

    Get PDF
    This dissertation proposes novel texture feature-based computational models for quantitative analysis of abnormal tissues in two neurological disorders: brain tumor and stroke. Brain tumors are the cells with uncontrolled growth in the brain tissues and one of the major causes of death due to cancer. On the other hand, brain strokes occur due to the sudden interruption of the blood supply which damages the normal brain tissues and frequently causes death or persistent disability. Clinical management of these brain tumors and stroke lesions critically depends on robust quantitative analysis using different imaging modalities including Magnetic Resonance (MR) and Digital Pathology (DP) images. Due to uncontrolled growth and infiltration into the surrounding tissues, the tumor regions appear with a significant texture variation in the static MRI volume and also in the longitudinal imaging study. Consequently, this study developed computational models using novel texture features to segment abnormal brain tissues (tumor, and stroke lesions), tracking the change of tumor volume in longitudinal images, and tumor grading in MR images. Manual delineation and analysis of these abnormal tissues in large scale is tedious, error-prone, and often suffers from inter-observer variability. Therefore, efficient computational models for robust segmentation of different abnormal tissues is required to support the diagnosis and analysis processes. In this study, brain tissues are characterized with novel computational modeling of multi-fractal texture features for multi-class brain tumor tissue segmentation (BTS) and extend the method for ischemic stroke lesions in MRI. The robustness of the proposed segmentation methods is evaluated using a huge amount of private and public domain clinical data that offers competitive performance when compared with that of the state-of-the-art methods. Further, I analyze the dynamic texture behavior of tumor volume in longitudinal imaging and develop post-processing frame-work using three-dimensional (3D) texture features. These post-processing methods are shown to reduce the false positives in the BTS results and improve the overall segmentation result in longitudinal imaging. Furthermore, using this improved segmentation results the change of tumor volume has been quantified in three types such as stable, progress, and shrinkage as observed by the volumetric changes of different tumor tissues in longitudinal images. This study also investigates a novel non-invasive glioma grading, for the first time in literature, that uses structural MRI only. Such non-invasive glioma grading may be useful before an invasive biopsy is recommended. This study further developed an automatic glioma grading scheme using the invasive cell nuclei morphology in DP images for cross-validation with the same patients. In summary, the texture-based computational models proposed in this study are expected to facilitate the clinical management of patients with the brain tumors and strokes by automating large scale imaging data analysis, reducing human error, inter-observer variability, and producing repeatable brain tumor quantitation and grading

    Development and assessment of learning-based vessel biomarkers from CTA in ischemic stroke

    Get PDF
    • …
    corecore