36,655 research outputs found

    Effect of Packet Drop and Jitter on Perceived Video Quality for Various Encoded Video over Streaming Network

    Get PDF
    Transmission of video application over the internet is increasing nowadays. Due to increasing user expectation for high quality multimedia contents, video quality has very important role nowadays. Network characteristics such as packet loss and variation in delayextremely influences the quality of video. Therefore, in this paper, we emulated the effect of packet loss and jitter for different video codec such as H.264 and H.265 to determine the impacts on the received video quality using the objective methods such as PSNR &SSIM. For this, network based emulation was conducted in laboratory using the tools such as OPNET and EvalVid. The result is important in order to understand how above mentioned factors impactthe video quality and also help to choose appropriate delay buffer size and packet repair techniques for various types of video, which will further help to improve the user experience in field of multimedia

    QoE Enhancement for Stereoscopic 3DVideo Quality Based on Depth and Color Transmission over IP Networks: A Review

    Get PDF
    In this review paper we focus on the enhancement of Quality of Experience (QoE) for stereoscopic 3D video based on depth information. We focus on stereoscopic video format because it takes less bandwidth than other format when 3D video is transmitted over an error channel but it is easily affected by the network parameters such as packets loss, delay and jitter. The packet loss on 3D video has more impact in the depth information than other 3D video factors such as comfort, motion, disparity and discomfort. The packet loss on depth information causes undesired effect on color and depth maps. Therefore, in order to minimize quality degradation, the application of frame loss concealment technique is preferred. This technique is expected to improve the QoE for end users. In this paper we will also review 3D video factors and their challenges, methods of measuring the QOE, algorithms used for packets loss recovery.

    Understanding the performance of Internet video over residential networks

    Get PDF
    Video streaming applications are now commonplace among home Internet users, who typically access the Internet using DSL or Cable technologies. However, the effect of these technologies on video performance, in terms of degradations in video quality, is not well understood. To enable continued deployment of applications with improved quality of experience for home users, it is essential to understand the nature of network impairments and develop means to overcome them. In this dissertation, I demonstrate the type of network conditions experienced by Internet video traffic, by presenting a new dataset of the packet level performance of real-time streaming to residential Internet users. Then, I use these packet level traces to evaluate the performance of commonly used models for packet loss simulation, and finding the models to be insufficient, present a new type of model that more accurately captures the loss behaviour. Finally, to demonstrate how a better understanding of the network can improve video quality in a real application scenario, I evaluate the performance of forward error correction schemes for Internet video using the measurements. I show that performance can be poor, devise a new metric to predict performance of error recovery from the characteristics of the input, and validate that the new packet loss model allows more realistic simulations. For the effective deployment of Internet video systems to users of residential access networks, a firm understanding of these networks is required. This dissertation provides insights into the packet level characteristics that can be expected from such networks, and techniques to realistically simulate their behaviour, promoting development of future video applications

    Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks

    Full text link
    Mobile ad hoc networks (MANETs) offer an excellent scenario for deploying communication applications because of the connectivity and versatility of this kind of networks. In contrast, the topology is usually extremely dynamic causing high rate of packet loss, so that ensuring a specific Quality of Service (QoS) for real-time video services becomes a hard challenge. In this paper, we evaluate the effect of using Multiple Description Coding (MDC) and Forward Error Correction (FEC) techniques for improving video quality in a multimedia content distribution system. A hybrid architecture using fixed and wireless ad hoc networks is proposed, which enables the use of multipoint-to-point transmission. MDC and FEC mechanisms can be combined with multipath transmission to increase the network efficiency and recover lost packets, improving the overall Quality of Experience (QoE) of the receiver. Simulations have been analyzed paying attention to objective parameters (Peak Signal to Noise Ratio, Packet Delivery Ratio, Decodable Frame Rate and interruptions) and subjective parameters. Results show that MDC increases the probability of packet delivery and FEC is able to recover lost frames and reduce video interruptions in moderate mobility scenarios, resulting in the improvement of video quality and the final user experience.This work was supported by project MIQUEL (TEC2007- 68119-C02-01/TCM) of the Spanish Ministry of Education and Science. The authors would like to thank the Editor and the reviewers for helpful suggestions to improve the quality of this paper.Acelas Delgado, P.; Arce Vila, P.; Guerri Cebollada, JC.; Castellanos Hernández, WE. (2014). Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks. Multimedia Tools and Applications. 68(3):969-989. https://doi.org/10.1007/s11042-012-1111-3969989683Apostolopoulos JG, Wong T, Tan W, Wee SJ (2002) On multiple description streaming with content delivery networks. IEEE INFOCOMBoukerche A (2009) Algorithms and protocols for wireless and mobile ad hoc networks. John Wiley & Sons IncChow CO, Ishii H (2007) Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput Commun 30:1754–1764Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC 3626Corrie B et al (2003) Towards quality of experience in advanced collaborative environments. Third Annual Workshop on Advanced Collaborative EnvironmentsGabrielyan E, Hersch R (2006) Reliable multi-path routing schemes for real-time streaming. International Conference on Digital Telecommunications, pp 65–65Gandikota VR, Tamma BR, Murthy CSR (2008) Adaptive-FEC based packet loss resilience scheme for supporting voice communication over adhoc wireless networks. IEEE Trans Mobile Comput 7:1184–1199Gharavi H (2008) Multi-channel for multihop communication links. International Conference on Telecommunications, pp 1–6Grega M, Janowski L, Leszczuk M, Romaniak P, Papir Z (2008) Quality of experience evaluation for multimedia services. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 4:142–153Hsieh MY, Huang YM, Chian TC (2007) Transmission of layered video streaming via multi-path on ad hoc networks. Multimed Tool Appl 34:155–177ITU—International Telecommunication Union (2007) Definition of quality of experience (QoE)”, Reference: TD 109rev2 (PLEN/12)ITU-R Recommendation BT.500-12 (2009) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaITU-T Recommendation P.910 (2000) Subjective video quality assessment methods for multimedia applications. International Telecommunication Union, GenevaKao KL, Ke ChH, Shieh CH (2006) An advanced simulation tool-set for video transmission performance evaluation. IEEE Region 10 Conference, pp 1–40Ke CH et al (2006) A novel realistic simulation tool for video transmission over wireless network. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trsutworthy ComputingKeisuke U, Cheeonn C, Hiroshi I (2008) A study on video performance of multipoint-to-point video streaming with multiple description coding over ad hoc networks. EEJ Trans Electron, Inf Syst 128:1431–1437Kilkki K (2008) Quality of experience in communications ecosystem. J Univers Comput Sci 14:615–624Li A (2007) RTP payload format for generic forward error correction. RFC 5109, Dec. 2007Li J, Blake C, Couto DD, Lee H, Morris R (2001) Capacity of ad hoc wireless networks. 7th Annual International Conference on Mobile Computing and Networking, pp 16–21Liao Y, Gibson JD (2011) Routing-aware multiple description video coding over mobile ad-hoc networks. IEEE Trans Multimed 13:132–142Lindeberg M, Kristiansen S, Plagemann T, Goebel V (2011) Challenges and techniques for video streaming over mobile ad hoc networks. Multimed Syst 17:51–82Mao S et al (2003) Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J Sel Area Comm 21:1721–1737Ni P (2009) Towards Optimal Quality of Experience Via Scalable Video Coding. Mälardalen University Press Licentiate Theses, SwedenPinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50:312–322Rong B, Qian Y, Lu K, Hu RQ, Kadoch M (2010) Multipath routing over wireless mesh networks for multiple description video transmission. IEEE J Sel Area Comm 28:321–331Schierl T, Ganger K, Hellge C, Wiegand T, Stockhammer T (2006) SVC-based multisource streaming for robust video trans- mission in mobile ad hoc networks. IEEE Wireless Comm 13:96–103Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circ Syst Video Tech 17:1204–1217Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circ Syst Video Tech 17:1103–1120VQEG (2008) Video quality experts group. Available online: http://www.vqeg.orgWang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612Wei W, Zakhor A (2004) Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc net- works. Proceedings of IEEE International Conference on Multimedia and Expo 2:1379–1382Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54:660–668Xunqi Y, Modestino JW, Bajic IV (2005) Performance analysis of the efficacy of packet-level FEC in improving video transport over networks. IEEE International Conference on Image Processing 2:177–180Zink M, Schmitt J, Steinmetz R (2005) Layer-encoded video in scalable adaptive streaming. IEEE Trans Multimed 7:75–8

    Video streaming

    Get PDF

    A study on the impact of AL-FEC techniques on TV over IP Quality of Experience

    Get PDF
    Abstract In this contribution, an evaluation of the effectiveness of Application Layer-Forward Error Correction (AL-FEC) scheme in video communications over unreliable channels is presented. In literature, several AL-FEC techniques for reducing the effect of noisy transmission on multimedia communication have been adopted. Recently, their use has been proposed for inclusion in TV over IP broadcasting international standards. The objective of the analysis performed in this paper is to verify the effectiveness of AL-FEC techniques in terms of perceived Quality of Service (QoS) and more in general of Quality of Experience (QoE), and to evaluate the trade-off between AL-FEC redundancy and video quality degradation for a given packet loss ratio. To this goal, several channel error models are investigated (random i.i.d. losses, burst losses, and network congestions) on test sequences encoded at 2 and 4 Mbps. The perceived quality is evaluated by means of three quality metrics: the full-reference objective quality metric NTIA-VQM combined with the ITU-T Rec. G.1070, the full-reference DMOS-KPN metric, and the pixel-wise error comparison performed by using the PSNR distortion measure. A post-processing synchronization between the original and the reconstructed stream has also been designed for improving the fidelity of the performed quality measures. The experimental results show the effectiveness and the limits of the Application Layer protection schemes

    A study on the impact of AL-FEC techniques on TV over IP Quality of Experience

    Get PDF
    Abstract In this contribution, an evaluation of the effectiveness of Application Layer-Forward Error Correction (AL-FEC) scheme in video communications over unreliable channels is presented. In literature, several AL-FEC techniques for reducing the effect of noisy transmission on multimedia communication have been adopted. Recently, their use has been proposed for inclusion in TV over IP broadcasting international standards. The objective of the analysis performed in this paper is to verify the effectiveness of AL-FEC techniques in terms of perceived Quality of Service (QoS) and more in general of Quality of Experience (QoE), and to evaluate the trade-off between AL-FEC redundancy and video quality degradation for a given packet loss ratio. To this goal, several channel error models are investigated (random i.i.d. losses, burst losses, and network congestions) on test sequences encoded at 2 and 4 Mbps. The perceived quality is evaluated by means of three quality metrics: the full-reference objective quality metric NTIA-VQM combined with the ITU-T Rec. G.1070, the full-reference DMOS-KPN metric, and the pixel-wise error comparison performed by using the PSNR distortion measure. A post-processing synchronization between the original and the reconstructed stream has also been designed for improving the fidelity of the performed quality measures. The experimental results show the effectiveness and the limits of the Application Layer protection schemes

    Modeling, Simulation and Analysis of Video Streaming Errors in Wireless Wideband Access Networks

    Get PDF
    Analysis of simulated models has become a veritable tool for investigating network behavioral patterns vis-Ă -vis transmitted content. The streaming video research domain employs modeling extensively due to availability of relevant tools. A vast majority of which are presented on the FOSS platform. The transmission of audio and video streaming services over different media is becoming ever more popular. This widespread increase is accompanied by the difficult task of maintaining the QoS of streaming video. The use of very accurate coding techniques for transmissions over wireless networks alone cannot guarantee a complete eradication of distortions characteristic of the video signal. A software- hardware composite system has been developed for investigating the effect of single bit error and bit packet errors in wideband wireless access systems on the quality of H.264/AVC standard video streams. Numerical results of the modeling and analysis of the effect of interference robustness on quality of video streaming are presented and discussed. Analytic results also suggest that the Markov model of packetization of error obtained from a real network for streaming video can be used in the simulations of transmission of video across networks in the hardware- software complex developed by the authors in a previous work

    Video Prioritization for Unequal Error Protection

    Get PDF
    We analyze the effect of packet losses in video sequences and propose a lightweight Unequal Error Protection strategy which, by choosing which packet is discarded, reduces strongly the Mean Square Error of the received sequenc
    • …
    corecore