215 research outputs found

    Split Distributed Computing in Wireless Sensor Networks

    Get PDF
    We designed a novel method intended to improve the performance of distributed computing in wireless sensor networks. Our proposed method is designed to rapidly increase the speed of distributed computing and decrease the number of the messages required for a network to achieve the desired result. In our analysis, we chose Average consensus algorithm. In this case, the desired result is that every node achieves the average value calculated from all the initial values in the reduced number of iterations. Our method is based on the idea that a fragmentation of a network into small geographical structures which execute distributed calculations in parallel significantly affects the performance

    Feature-based calibration of distributed smart stereo camera networks

    Get PDF
    A distributed smart camera network is a collective of vision-capable devices with enough processing power to execute algorithms for collaborative vision tasks. A true 3D sensing network applies to a broad range of applications, and local stereo vision capabilities at each node offer the potential for a particularly robust implementation. A novel spatial calibration method for such a network is presented, which obtains pose estimates suitable for collaborative 3D vision in a distributed fashion using two stages of registration on robust 3D features. The method is first described in a general, modular sense, assuming some ideal vision and registration algorithms. Then, existing algorithms are selected for a practical implementation. The method is designed independently of networking details, making only a few basic assumptions about the underlying network\u27s capabilities. Experiments using both software simulations and physical devices are designed and executed to demonstrate performance

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    One Kind of Redundant Reliability Wireless from Network Algorithm Research Based on Advanced Version DV-HOP Route Agreement

    Get PDF
    Wireless ad-hoc network has occupied important content in the field of broadband wireless network. Traditional wireless ad-hoc network using conventional peer node, without a central controller, multiparty routing technology in the current application of pumping has been a huge success. But this kind of network is widespread shortcomings with poor reliability. In order to solve this problem, we creatively put forward a kind of based on the modified DV - HOP routing protocol the high reliability of the wireless ad-hoc network is proposed. In the protocol algorithm used for heterogeneous network integration technology is terminal technology. Through this algorithm's computer simulation and actual environment performance and function test, proved this algorithm is compared with traditional wireless ad-hoc network routing protocol algorithm has higher reliability, and it can than the current wireless ad-hoc network has an average of 500 hours continuous trouble-free working time up to 600 hours. So you can argue that this algorithm has high practical value and is worth popularizing in the field

    A framework for cooperative localization in ultra-wideband wireless networks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 89-93).Location-aware technologies have the potential to revolutionize computing, cellular services, sensor networks, and many other commercial, military, and social applications. In wireless networks, accurate information about an agent's location can give meaning to observed data and facilitate the agent's interactions with its surroundings and neighbors. Determining the location of one or more agents, known as localization or positioning, is a fundamental challenge. Most existing localization methods rely on existing infrastructure and hence lack the flexibility and robustness necessary for large ad-hoc networks. In this thesis, we describe a framework for localization that overcomes these limitations by utilizing cooperation: the agents in the network work together to determine their individual locations. We derive a practical algorithm for cooperative localization by formulating the problem as a factor graph and applying the sum-product algorithm. Each agent uses relative positioning measurements and probabilistic location information from its neighbors to iteratively update its location estimate. We investigate the performance of this algorithm in a network of ultra-wideband (UWB) nodes, which are well-suited for localization due to their potential to measure inter-node distances with high accuracy. Realistic models of UWB ranging error, based on an extensive measurement campaign in several indoor environments, are incorporated into the localization algorithm. Using the experimental data and simulations, we quantify the benefits that cooperation brings to localization.by Jaime Lien.M.Eng

    On the offline physical layer impairment aware RWA algorithms in transparent optical networks: state-of-the-art and beyond

    Get PDF
    In transparent optical networks with no regeneration, the problem of capacity allocation to traffic demands is called "Roting and Wavelength Assignment". Much work on this topic recently has focused on the dynamic case, whereby demands arrive and must be served in real-time. In addition, due to lack of regeneration, physical impairments accumulate as light propagates and QoT may become inappropiate (e.g., too high Bit Error Rate). Considering the physical layer impairments in the network planning phase gives rise to a class of RWA algorithms: offline Physical Layer Impairment Aware- (PLIA-)RWA. This paper makes a survey of such algorithms, proposes a taxonomy, and a comparison between these algorithms for common metrics. We also propose a novel offline PLIA-RWA algorithm, called POLIO-RWA, and show through simulations that it decreases blocking rate compared with other PLIA-RWA algorithms.Postprint (published version

    An Approach to Fixed/Mobile Converged Routing

    Get PDF
    We consider a family of routing protocols for networks in which the core topology is essentially fixed by where the end systems may be mobile. We refer to this form of routing as Fixed/Mobile Converged (FMC) routing.This is a mixture of the traditional prefix-routed scenario fo the fixed Internet, and the classical edge mobility scenario that is today supported by cellularnetworks, primarily as part of the cellular technology elements (GSM, GPRS, etc.). We outline a general architecture for the support of such edge mobility, and present an approach to FMC routing that fits within this architecture. We then present initial simulation resultsillustrating the potential scalability and routing efficiency of this approach

    Survey on Various Aspects of Clustering in Wireless Sensor Networks Employing Classical, Optimization, and Machine Learning Techniques

    Get PDF
    A wide range of academic scholars, engineers, scientific and technology communities are interested in energy utilization of Wireless Sensor Networks (WSNs). Their extensive research is going on in areas like scalability, coverage, energy efficiency, data communication, connection, load balancing, security, reliability and network lifespan. Individual researchers are searching for affordable methods to enhance the solutions to existing problems that show unique techniques, protocols, concepts, and algorithms in the wanted domain. Review studies typically offer complete, simple access or a solution to these problems. Taking into account this motivating factor and the effect of clustering on the decline of energy, this article focuses on clustering techniques using various wireless sensor networks aspects. The important contribution of this paper is to give a succinct overview of clustering

    Analysis and implementation of distributed algorithms for multi-robot systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 159-166).Distributed algorithms for multi-robot systems rely on network communications to share information. However, the motion of the robots changes the network topology, which affects the information presented to the algorithm. For an algorithm to produce accurate output, robots need to communicate rapidly enough to keep the network topology correlated to their physical configuration. Infrequent communications will cause most multirobot distributed algorithms to produce less accurate results, and cause some algorithms to stop working altogether. The central theme of this work is that algorithm accuracy, communications bandwidth, and physical robot speed are related. This thesis has three main contributions: First, I develop a prototypical multi-robot application and computational model, propose a set of complexity metrics to evaluate distributed algorithm performance on multi-robot systems, and introduce the idea of the robot speed ratio, a dimensionless measure of robot speed relative to message speed in networks that rely on multi-hop communication. The robot speed ratio captures key relationships between communications bandwidth, mobility, and algorithm accuracy, and can be used at design time to trade off between them. I use this speed ratio to evaluate the performance of existing distributed algorithms for multi-hop communication and navigation. Second, I present a definition of boundaries in multi-robot systems, and develop new distributed algorithms to detect and characterize them. Finally, I define the problem of dynamic task assignment, and present four distributed algorithms that solve this problem, each representing a different trade-off between accuracy, running time, and communication resources. All the algorithms presented in this work are provably correct under ideal conditions and produce verifiable real-world performance.(cont.) They are self-stabilizing and robust to communications failures, population changes, and other errors. All the algorithms were tested on a swarm of 112 robots.by James Dwight McLurkin, IV.Ph.D

    Localization of nodes in wired and wireless networks

    Get PDF
    This thesis focuses on the implementation of algorithms for localization of nodes in wired and wireless networks. The thesis is organized into two papers. The first paper presents the localization algorithms based on time of arrival (TOA) and time difference of arrival (TDOA) techniques for computer networks such as the Internet by using round-trip-time (RTT) measurements obtained from known positions of the gateway nodes. The RTT values provide an approximate measure of distance between the gateway nodes and an unknown node. The least squares technique is then used to obtain an estimated position of the unknown node. The second paper presents localization of an unknown node during route setup messages in wireless ad hoc and sensor networks using a new routing protocol. A proactive multi-interface multichannel routing (MMCR) protocol, recently developed at Missouri S&T, was implemented on the Missouri S&T motes. This protocol calculates link costs based on a composite metric defined using the available end-to-end delay, energy utilization, and bandwidth, and it chooses the path that minimizes the link cost factor to effectively route the information to the required destination. Experimental results indicate enhanced performance in terms of quality of service, and implementation of this protocol requires no modification to the current IEEE 802.11 MAC protocol. Received signal strength indicator (RSSI) values are recorded from the relay nodes (gateway nodes) to the unknown node during route setup messages. The location of the unknown node is estimated using these values with some a priori profiling and the known positions of the relay nodes as inputs to the least squares technique --Abstract, page iv
    • 

    corecore