620 research outputs found

    Adversarial Network Bottleneck Features for Noise Robust Speaker Verification

    Full text link
    In this paper, we propose a noise robust bottleneck feature representation which is generated by an adversarial network (AN). The AN includes two cascade connected networks, an encoding network (EN) and a discriminative network (DN). Mel-frequency cepstral coefficients (MFCCs) of clean and noisy speech are used as input to the EN and the output of the EN is used as the noise robust feature. The EN and DN are trained in turn, namely, when training the DN, noise types are selected as the training labels and when training the EN, all labels are set as the same, i.e., the clean speech label, which aims to make the AN features invariant to noise and thus achieve noise robustness. We evaluate the performance of the proposed feature on a Gaussian Mixture Model-Universal Background Model based speaker verification system, and make comparison to MFCC features of speech enhanced by short-time spectral amplitude minimum mean square error (STSA-MMSE) and deep neural network-based speech enhancement (DNN-SE) methods. Experimental results on the RSR2015 database show that the proposed AN bottleneck feature (AN-BN) dramatically outperforms the STSA-MMSE and DNN-SE based MFCCs for different noise types and signal-to-noise ratios. Furthermore, the AN-BN feature is able to improve the speaker verification performance under the clean condition

    Learning to Behave Like Clean Speech: Dual-Branch Knowledge Distillation for Noise-Robust Fake Audio Detection

    Full text link
    Most research in fake audio detection (FAD) focuses on improving performance on standard noise-free datasets. However, in actual situations, there is usually noise interference, which will cause significant performance degradation in FAD systems. To improve the noise robustness, we propose a dual-branch knowledge distillation fake audio detection (DKDFAD) method. Specifically, a parallel data flow of the clean teacher branch and the noisy student branch is designed, and interactive fusion and response-based teacher-student paradigms are proposed to guide the training of noisy data from the data distribution and decision-making perspectives. In the noise branch, speech enhancement is first introduced for denoising, which reduces the interference of strong noise. The proposed interactive fusion combines denoising features and noise features to reduce the impact of speech distortion and seek consistency with the data distribution of clean branch. The teacher-student paradigm maps the student's decision space to the teacher's decision space, making noisy speech behave as clean. In addition, a joint training method is used to optimize the two branches to achieve global optimality. Experimental results based on multiple datasets show that the proposed method performs well in noisy environments and maintains performance in cross-dataset experiments

    Can we steal your vocal identity from the Internet?: Initial investigation of cloning Obama’s voice using GAN, WaveNet and low-quality found data

    Get PDF
    Thanks to the growing availability of spoofing databases and rapid advances in using them, systems for detecting voice spoofing attacks are becoming more and more capable, and error rates close to zero are being reached for the ASVspoof2015 database. However, speech synthesis and voice conversion paradigms that are not considered in the ASVspoof2015 database are appearing. Such examples include direct waveform modelling and generative adversarial networks. We also need to investigate the feasibility of training spoofing systems using only low-quality found data. For that purpose, we developed a generative adversarial network-based speech enhancement system that improves the quality of speech data found in publicly available sources. Using the enhanced data, we trained state-of-the-art text-to-speech and voice conversion models and evaluated them in terms of perceptual speech quality and speaker similarity. The results show that the enhancement models significantly improved the SNR of low-quality degraded data found in publicly available sources and that they significantly improved the perceptual cleanliness of the source speech without significantly degrading the naturalness of the voice. However, the results also show limitations when generating speech with the low-quality found data.Comment: conference manuscript submitted to Speaker Odyssey 201

    DNN Filter Bank Cepstral Coefficients for Spoofing Detection

    Get PDF
    With the development of speech synthesis techniques, automatic speaker verification systems face the serious challenge of spoofing attack. In order to improve the reliability of speaker verification systems, we develop a new filter bank based cepstral feature, deep neural network filter bank cepstral coefficients (DNN-FBCC), to distinguish between natural and spoofed speech. The deep neural network filter bank is automatically generated by training a filter bank neural network (FBNN) using natural and synthetic speech. By adding restrictions on the training rules, the learned weight matrix of FBNN is band-limited and sorted by frequency, similar to the normal filter bank. Unlike the manually designed filter bank, the learned filter bank has different filter shapes in different channels, which can capture the differences between natural and synthetic speech more effectively. The experimental results on the ASVspoof {2015} database show that the Gaussian mixture model maximum-likelihood (GMM-ML) classifier trained by the new feature performs better than the state-of-the-art linear frequency cepstral coefficients (LFCC) based classifier, especially on detecting unknown attacks

    Spoofing Detection in Automatic Speaker Verification Systems Using DNN Classifiers and Dynamic Acoustic Features

    Get PDF
    corecore