7 research outputs found

    Performanse bežičnog telekomunikacionog sistema u prisustvu n-m fedinga

    Get PDF
    In this thesis characteristics of wireless communication system operating over η-μ fading channel are considered together with diversity reception techniques which reduce the influence of η-μ fading on the system’s outage probability, average bit error rate, channel capacity, level crossing rate and average fade duration. Performance improvement is very significant within radio systems operating into cell network configuration. Cell network configuration realization could be used for increasing capacity of wireless communication system. With the increase of number of cells, i.e. with reducing the surface area of each cell, channel capacity increases. With the increase of number of cells, co-channel interference level increase, which degrades system performance values. In this work the compromise between the system capacity and reception quality is inquired. By applying diversity reception techniques, system performance values, degraded by the influences of slow fading, multipath fading and co-channel interference, are improved, so it is possible to reduce the cell area and to increase system capacity. In the second part of Phd thesis, various distributions for modeling the envelope variations in fading channels have been presented, cases in which these models are used have been pointed out, and advantages and imperfections of corresponding models for corresponding propagation scenarios have been presented. In third chapter, statistical characteristics of the first order of η-μ random variable, α-η-μ random variable and squared η-μ random variable are considered. For each mentioned variables, expressions for probability density function, cumulative distributive function, characteristic function and moments have been derived. Also for each observed case sum of two random variables, product of two random variables, ratio of two random variables, maximal value of two random variables and minimum value of two random variables have been determined. Obtained results are used for determining performances of wirelles reception with applied diversity technique for mitigation fading influence on system performances. Based on obtained expressions, graphs are depicted for probability density functions and cumulative distribution functions for the various values of propagation environment parameters. Probability density function and cumulative distribution function values are also graphically presented for α-η-μ random variable in the function of α and μ parameter change. For the purpose of performance analysis in η-μ fading environment, in the fourth chapter have been considered transformations of three η-μ random variables. Based on presented transformations of η-μ random variables, transmission performances estimation has been conducted, for the η-μ fading channel. Estimation of signal performances for the cases when diversity techniques are applied are carried out based on standard signal performance measures, i.e. outage probability (OP), average bit error probability (ABER), for observed modulation format and channel capacity. Graphically are presented ABER values for various values of system parameters when transmission is carried out with different modulation formats. By comparing obtained values it can be seen received signal performance improvement for the cases when diversity techniques are apliied over the reception case when there is no diversity technique applied. In the fifth chapter statistical characteristics of the second order of η-μ radnom proccess, and random proccesses which represent various variations of η-μ radnom proccess, are considered. Brand new random proccesses, for describing fading in special channel conditions are fromed. For all this cases level crossing rates are determined. In the sixth chapter of this Phd thesis are considered wireless communication systems with reception with applied diversity techniques for mitigating the influence of η-μ fading on system performances. Space diveristy technique has been used. Useful signals are accepted at the antennas, envelopes of these signals are combined and decision is made based on the signal values at the combiner outputs. System performances are determined for the cases of SC and MRC combining. For bouth cases probability density function and cumulative distribution function of the signal at the combiners outouts are derived, as well as the average bit error rate for the various used modualtion formats and level crossing rate. Results for ABER for various modulation formats are graphically presented as well as the improvement of the outage probability at the reception obtained by applying SC with two reception branches. In this part it has also been considered the case when bouth desired and interferring signal are described with η-μ distribution, as well as the case when desired signal has been described with η-μ distribution while interference has been described with κ-μ distribution. In the seventh chapter macrodiversity sistem with SC reception and two MRC microdiversity combiners has been considered. At the inputs at the microdiversity combiners η-μ fading is present, while at the inputs as macrodiversity combiners slow Gamma fading is present. For this model of system it has been calculated probability density function, cumulative distribution function, characteristic function, moments, variance, outage probability and level crossing rate for the signal at the macrodiversity combiner output. Results obtained for level croosing rate at the macrodiversity combiner output are graphically presented

    Uncoded space-time labeling diversity with three transmit antennas: symbol mapping designs and error performance analysis.

    Get PDF
    Doctoral Degrees. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications on page iii

    Razvoj metoda i algoritama za procenu performansi komunikacionih sistema primenom aproksimacija specijalnih funkcija

    Get PDF
    The intensive development of wireless communication systems has been accompanied by the need to develop methods and algorithms for implementing appropriate approximations of special functions in order to efficiently estimate the corresponding performance of these services through their application. In order to evaluate the behavior of digital communications systems, it is necessary to estimate standard performance measures for the observed wireless communications systems, various modulation types application, detection types, as well as channel models, and observe relations between performance and key values of system parameters. The analysis of the average bit error rate at reception for the applied modulation format is one of the tools for assessing service performance, that describes the nature of the wireless communication system in the best manner. In order to analytically evaluate the average bit error rate for the applied modulation format, it is necessary to perform the most accurate implementation of the approximation of special functions erfc(x), erf (x), Marcum Q, in the widest input range values. The dissertation will present composite methods of the special functions’ approximations. In addition to the simplicity of realization in approximating the observed functions, the aspect of robustness of approximations absolute and relative error values in a wide range of input parameters values will be considered. The advantages of the proposed solutions will be highlighted by direct comparison with the absolute and relative errors obtained by using the known special functions’ approximations from the literature. Furthermore, when transferring information through fading communication channels, for cases of application of proposed special functions’ approximations, it will be proved that system performance can be determined more easily by applying solutions proposed in the dissertation. In this way, it would be easier to determine the probability of the error of communication systems due to different types of fading existance in the channel. By comparing predicted values of the average bit error rate at reception, when transmitting signals through various communication channels medias, for cases of application of existing, previously proposed special functions’ approximations, with the average bit error rate at reception obtained by calculation based on the proposed approximation solutions, it will be shown that communication performances can be calculated more precisely. Proposed approximations could also be used in the source coding of the signal and could simplify design and realization of the quantizers

    Application of diversity techniques for solving the problems of the effects impurities in optical fibers on the performance of optical systems

    Get PDF
    We analyzed the methods for reducing the impact of noise and interference, the performance of digital optical IM-DD system. Performances of digital optical telecommunication systems, as well as their improvement, were analyzed using standard criteria for evaluation: outage probability, average probability, channel capacity, and average fading duration. These performance measures are determined on the basis of statistical characteristics of the first and second rows of signal reception and are part of the technical documentation accompanying each of the realized digital optical communication system. Therefore, the closed form of expressions, derived in this dissertation, which can be used to calculate the statistical characteristics of signal reception, represent a significant contribution, in terms of design of digital optical transmission systems. Our analysis is placed on theoretical consideration on so far untreated cases, and therefore the theoretical basis of physical phenomena that affect the transmission through the digital optical systems, well known from the literature, are not further elaborated. We included a procedure for determining the expression for the multidimensional joint probability density distribution with correlated and uncorrelated random variables. The derived expressions have a wide range of applicability and are an excellent basis for further performance analysis of optical digital transmission systems, in terms of correlated channels, as well as the characteristics of the connection by using multiple-input receiver. Their practical use is demonstrated especially in the section that deals λSK optical systems, as well as the part of that processes - the relay optical systems. Improving the transmission reliability and reducing the impact of noise and interference on the performance of digital optical telecommunication systems, with a reduction in power transmission and increasing the distance between the transmitter and receiver, is analyzed through the applying of techniques using spatial diversity reception. The dissertation discussed the various techniques of spatial combining receiving signals from the receiving branches of optical systems, in terms of reducing impact noise and interference. Ratios were formed and interference signals at the entrance combiner branches and under the terms of the previous chapter are determined by the joint probability density of these relationships for all incoming branches and the corresponding joint cumulative probability. Using this statistical feature of the incoming signal and interference are determined and statistical characteristics of signal-to-interference at the output of given combiner, which represents the next significant contribution to the dissertation. The contribution of these derived expressions can be seen from the aspect of using the results obtained for the case of the proposed statistical modeling of the channel model when considering the reduction of the impact of various types of noise and interference, and examination performance enhancements of digital optical telecommunication systems using diversity reception techniques. Specifically, by assigning appropriate values of parameters in the corresponding expressions, which describe the statistical characteristics of the first order of receipt, an analysis of the value of standard measures of performance of optical telecommunication systems, as well as improve their use of spatial diversity techniques, for cases when the communication channel is exposed to various types of interference and noises. Using the derived expressions can be shown to improve all the standard measure of performance of optical telecommunication systems. Also, when transferred unchanged forces the useful signal and interference, and at the same range of connections, get better system performance (lower values of the probability of cancellation, less the value of average bet error probability, lower average fading duration...). Based on these facts can be concluded that the required the outage probability values (ABEP) for the reception, when we apply the described techniques of receipt, in the same range of connections and the same noise power, can achieve the necessary reduction of the useful signal power in transmission, that is, at the same useful signal power, the same level of interference in the channel, the required the outage probability (ASEP) at the reception, when we apply the described techniques of receipt, can be achieved at larger distances from the transmitting terminal

    Generalised differential golden code modulation: error performance analysis and bandwidth efficiency.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The receiver of a conventional differential modulation scheme performs detection without knowledge of the channel state information (CSI). This results in a 3dB performance loss compared to coherent modulation. In order to enhance this error performance, generalised differential modulation is utilised. This thesis firstly presents a generalised differential modulation scheme for the Golden code (GDMGC) based on quadrature amplitude modulation (QAM). The average bit error probability (ABEP) for the GDM-GC scheme is derived and simulations on bit error rates (BER) are carried out in order to verify the derived theoretical framework, where it is shown that BER results lie well within the derived bounds. In addition, compared to coherent GC with maximum likelihood (ML) detection both 16QAM and 64QAM GDM-GC result in approximately 0.4 dB performance loss for a frame length of L = 400. However, the computational complexity of the GDM-GC scheme is reduced significantly in comparison to the coherent ML detector. Secondly, this thesis extends the generalised differential modulation scheme to multiple input symbol Golden code and proposes a multiple input symbol generalised differential Golden code (MIS-GD-GC) scheme. This scheme not only boosts error performance in comparison to conventional differential multiple input symbol Golden code (MIS-GC), but it lso produces multiple diversity order compared to the conventional Golden code. The simulations on BER for the MIS-GD-GC scheme not only compare very well to the derived theoretical bounds but also show that the BER draws closer to that of coherent MIS-GC when the frame length is increased. For instance, at a frame length of L = 400 , the error performance gap between MIS-GD-GC and its coherent counterpart is only 0.4 dB. Finally, driven by the need to develop a scheme that can allow for transmission of more data to help meet the demands of modern wireless communication systems, this thesis seeks to improve the bandwidth efficiency of the GDM-GC scheme. An enhanced bandwidth efficient generalised differential Golden code (EBE-GD-GC) scheme based on QAM is proposed and its ABEP derived. The simulated BER results for the EBE-GD-GC scheme are shown to lie well within the derived ABEP and achieve almost the same error performance as GDM-GC at high signal-to-noise ratio (SNR) regions but with extra bit(s) of information sent in each transmitted space-time block code (STBC) compared to the typical GDM-GC scheme. In addition, compared to the conventional generalised differential Golden code, both 16QAM and 64QAM EBE-GD-GC result in < 1dB performance loss from a BER of 1 × 10−5

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    corecore