89 research outputs found

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    The Effect of Augmented Reality Treatment on Learning, Cognitive Load, and Spatial Visualization Abilities

    Get PDF
    This study investigated the effects of Augmented Reality (AR) on learning, cognitive load and spatial abilities. More specifically, it measured learning gains, perceived cognitive load, and the role spatial abilities play with students engaged in an astronomy lesson about lunar phases. Research participants were 182 students from a public university in southeastern United States, and were recruited from psychology research pool. Participants were randomly assigned to two groups: (a) Augmented Reality and Text Astronomy Treatment (ARTAT); and (b) Images and Text Astronomy Treatment (ITAT). Upon entering the experimental classroom, participants were given (a) Paper Folding Test to measure their spatial abilities; (b) the Lunar Phases Concept Inventory (LPCI) pre-test; (c) lesson on Lunar Phases; (d) NASA-TLX to measure participants’ cognitive load; and (e) LPCI post-test. Statistical analysis found (a) no statistical difference for learning gains between the ARTAT and ITAT groups; (b) statistically significant difference for cognitive load; and (c) no significant difference for spatial abilities scores

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    The effects of the size and weight of a mobile device on an educational game

    Full text link
    In this paper, we present an educational game for an iPhone and a Tablet PC. The main objective of the game was to reinforce children's knowledge about the water cycle. The game included different interaction forms like the touch screen and the accelerometer and combined AR mini-games with non-AR mini-games for better gameplay immersion. The main differences between the two devices were screen size and weight. A comparative study to check how these differences affect different aspects was carried out. Seventy-nine children from 8 to 10 years old participated in the study. From the results, we observed that the different characteristics (screen size and weight) of the devices did not influence the children's acquired knowledge, engagement, satisfaction, ease of use, or AR experience. There was only a statistically significant difference for the global score in which the iPhone was scored higher.We would like to highlight that the scores for the two devices and for all the questions were very high with means of over 4 (on a scale from 1 to 5). These positive results suggest that games of this kind could be appropriate educational games and that the mobile device used may not be a decisive factor. (C)2012 Elsevier Ltd. All rights reserved.This work was funded by the Spanish APRENDRA project (TIN2009-14319-C02). We would like to thank the following for their contributions: The "Escola d'Estiu" and especially Juan Cano, Miguelon Gimenez, and Javier Irimia. This work would not have been possible without their collaboration. Noemi Rando, Encarna Torres, Severino Gonzalez, M. Jose Vicent, Patricia Liminana, Tamara Aguilar, Alfonso Lopez, Yolanda Martinez, Enrique Daunis, M. Jose Martinez, and Eloy Hurtado for their help. The children's parents who signed the agreement to allow their children to participate in the study. The children who participated in the study. The ETSInf for letting us use its facilities during the testing phase.Furió Ferri, D.; González Gancedo, S.; Juan Lizandra, MC.; Seguí, I.; Costa, M. (2013). The effects of the size and weight of a mobile device on an educational game. Computers and Education. 64:24-41. https://doi.org/10.1016/j.compedu.2012.12.015S24416

    ISMCR 1994: Topical Workshop on Virtual Reality. Proceedings of the Fourth International Symposium on Measurement and Control in Robotics

    Get PDF
    This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation

    Designing Serious Games for Education: From Pedagogical Principles to Game Mechanisms

    Get PDF
    International audienceSGs represent an important opportunity for improving education thanks to their ability to compel players and to present realistic simulations of real-life situations. The scientific community is aware that we are just at the beginning of a proper use of gaming technologies for education and training and, in particular, there is a need for scientific and engineering methods for building games not only as more realistic simulations of the physical world, but as means that provide effective learning experiences. This requires an ever closer cooperation among the various actors involved in the overall SG life- chain, putting pedagogy in a central role, given the educational target of the SGs. This paper addresses the till-now inadequate integration of educational and game design principles and proposes techniques, methods and mechanisms that allow designers with different background to dialogue among each other and to define games that are able to integrate - by design - entertainment and educational features. In particular, the paper follows a design path that starts from the definition of reference frameworks and then analyses the typical categories of design patterns, before focusing on the user-interaction modalities - seen from a pedagogical point of view - given their relevance for the end-users. In the end, we discuss the sandbox serious game model, that looks suited to implement - by design - joint pedagogical and entertainment features. We believe that the indications provided in this paper can be useful for researchers and stakeholders to understand the typical issues in SG design and to get inspiration about possible solutions that take into account the need to implement tools that are effective both as an entertainment medium and as an education tool

    Investigating Real-time Touchless Hand Interaction and Machine Learning Agents in Immersive Learning Environments

    Get PDF
    The recent surge in the adoption of new technologies and innovations in connectivity, interaction technology, and artificial realities can fundamentally change the digital world. eXtended Reality (XR), with its potential to bridge the virtual and real environments, creates new possibilities to develop more engaging and productive learning experiences. Evidence is emerging that thissophisticated technology offers new ways to improve the learning process for better student interaction and engagement. Recently, immersive technology has garnered much attention as an interactive technology that facilitates direct interaction with virtual objects in the real world. Furthermore, these virtual objects can be surrogates for real-world teaching resources, allowing for virtual labs. Thus XR could enable learning experiences that would not bepossible in impoverished educational systems worldwide. Interestingly, concepts such as virtual hand interaction and techniques such as machine learning are still not widely investigated in immersive learning. Hand interaction technologies in virtual environments can support the kinesthetic learning pedagogical approach, and the need for its touchless interaction nature hasincreased exceptionally in the post-COVID world. By implementing and evaluating real-time hand interaction technology for kinesthetic learning and machine learning agents for self-guided learning, this research has addressed these underutilized technologies to demonstrate the efficiency of immersive learning. This thesis has explored different hand-tracking APIs and devices to integrate real-time hand interaction techniques. These hand interaction techniques and integrated machine learning agents using reinforcement learning are evaluated with different display devices to test compatibility. The proposed approach aims to provide self-guided, more productive, and interactive learning experiences. Further, this research has investigated ethics, privacy, and security issues in XR and covered the future of immersive learning in the Metaverse.<br/

    Investigating Real-time Touchless Hand Interaction and Machine Learning Agents in Immersive Learning Environments

    Get PDF
    The recent surge in the adoption of new technologies and innovations in connectivity, interaction technology, and artificial realities can fundamentally change the digital world. eXtended Reality (XR), with its potential to bridge the virtual and real environments, creates new possibilities to develop more engaging and productive learning experiences. Evidence is emerging that thissophisticated technology offers new ways to improve the learning process for better student interaction and engagement. Recently, immersive technology has garnered much attention as an interactive technology that facilitates direct interaction with virtual objects in the real world. Furthermore, these virtual objects can be surrogates for real-world teaching resources, allowing for virtual labs. Thus XR could enable learning experiences that would not bepossible in impoverished educational systems worldwide. Interestingly, concepts such as virtual hand interaction and techniques such as machine learning are still not widely investigated in immersive learning. Hand interaction technologies in virtual environments can support the kinesthetic learning pedagogical approach, and the need for its touchless interaction nature hasincreased exceptionally in the post-COVID world. By implementing and evaluating real-time hand interaction technology for kinesthetic learning and machine learning agents for self-guided learning, this research has addressed these underutilized technologies to demonstrate the efficiency of immersive learning. This thesis has explored different hand-tracking APIs and devices to integrate real-time hand interaction techniques. These hand interaction techniques and integrated machine learning agents using reinforcement learning are evaluated with different display devices to test compatibility. The proposed approach aims to provide self-guided, more productive, and interactive learning experiences. Further, this research has investigated ethics, privacy, and security issues in XR and covered the future of immersive learning in the Metaverse.<br/

    Proceedings of the Second International Workshop on Physicality, Physicality 2007

    Get PDF
    • …
    corecore