49 research outputs found

    Porous Low-Dielectric-Constant Material for Semiconductor Microelectronics

    Get PDF
    To provide high speed, low dynamic power dissipation, and low cross-talk noise for microelectronic circuits, low-dielectric-constant (low-k) materials are required as the inter- and intra-level dielectric (ILD) insulator of the back-end-of-line interconnects. Porous low-k materials have low-polarizability chemical compositions and the introducing porosity in the film. Integration of porous low-k materials into microelectronic circuits, however, poses a number of challenges because the composition and porosity affected the resistance to damage during integration processing and reduced the mechanical strength, thereby degrading the properties and reliability. These issues arising from porous low-k materials are the subject of the present chapter

    Study of TMCTS based PECVD carbon-doped low dielectric constant material

    Get PDF
    Master'sMASTER OF SCIENC

    Plasma Damage on Low-k Dielectric Materials

    Get PDF
    Low dielectric constant (low-k) materials as an interconnecting insulator in integrated circuits are essential for resistance-capacitance (RC) time delay reduction. Plasma technology is widely used for the fabrication of the interconnects, such as dielectric etching, resisting ashing or stripping, barrier metal deposition, and surface treatment. During these processes, low-k dielectric materials may be exposed to the plasma environments. The generated reactive species from the plasma react with the low-k dielectric materials. The reaction involves physical and chemical effects, causing degradations for low-k dielectric materials. This is called “plasma damage” on low-k dielectric materials. Therefore, this chapter is an attempt to provide an overview of plasma damage on the low-k dielectric materials

    Nanofluid Flow in Porous Media

    Get PDF
    Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized

    Plasma-Enhanced Vapor Deposition Process for the Modification of Textile Materials

    Get PDF
    Nowadays many techniques are used for the surface modification of fabrics and textiles. Two fundamental techniques based on vacuum deposition are known as chemical vapor deposition (CVD) and physical vapor deposition (PVD). In this chapter, the effect of plasma-enhanced physical and chemical vapor deposition on textile surfaces is investigated and explained

    Introducing dusty plasma particle growth of nanospherical titanium dioxide

    Full text link
    In dusty plasma environments, the spontaneous growth of nanoparticles from reactive gases has been extensively studied for over three decades, primarily focusing on hydrocarbons and silicate particles. Here, we introduce the growth of titanium dioxide, a wide band gap semiconductor, as dusty plasma nanoparticles. The resultant particles exhibited a spherical morphology and reached a maximum homogeneous radius of 230 ±\pm 17 nm after an elapsed time of 70 seconds. The particle grew linearly and the growth displayed a cyclic behavior; that is, upon reaching their maximum radius, the largest particles fell out of the plasma, and a new growth cycle immediately followed. The particles were collected after being grown for different amounts of time and imaged using scanning electron microscopy. Further characterization was carried out using energy dispersive X-ray spectroscopy, X-ray diffraction and Raman spectroscopy to elucidate the chemical composition and crystalline properties of the maximally sized particles. Initially, the as-grown particles after 70 seconds exhibited an amorphous structure. However, annealing treatments at temperatures of 400 ^\circC and 800 ^\circC induced crystallization, yielding anatase and rutile phases, respectively. Notably, annealing at 600 ^\circC resulted in a mixed phase of anatase and rutile. These findings open new avenues for a rapid and controlled growth technique of titanium dioxide as dusty plasma.Comment: 8 pages, 5 figure

    Nanomechanical characterization of BD (Low-K) thin films and Cu/BD multilayered stacks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Couches minces organo-siliciées déposées par PECVD pour la fonctionnalisation de capteurs de gaz

    Get PDF
    Gas detection is a growing field, both for indoor and outdoor air quality monitoring and for process monitoring. It is indeed particularly critical in the case of volatile organic compounds (VOC) whose impact on public health is proven. Detecting and quantifying their presence becomes a major problem and various solutions are available. One of them, based on the coupling of a resonant beam and a chromatography micro column, appears to be a promising solution. Those two devices combine selectivity and high sensitivity; however, they require functionalization with a sensitive layer. This work focused on SiOCH thin films deposited by PECVD. The gas interaction of the sensitive layers deposited during this work was studied using quartz crystal microbalances (QCM). The obtained measurements were then correlated to a simple model, providing an interpretation of the interaction – for steady-state but also kinetic regime - between the SiOCH and the gas of interest. The first part of the study shows the impact of the chemical composition of those materials on their affinity for toluene, representative for aromatic VOCs. Relying on physico-chemical characterization techniques, the role of various chemical bonds on the solid/gas interaction was investigated. This work shows that a compromise between chemical composition and hydrophobicity has to be reached to preserve SiOCH affinity and temporal response. The influence of porosity was then explored in a second step to further increase the sensitivity of those materials. Original deposition processes were developed in order to propose new porous materials with higher toluene affinity. The limits of the subtractive approach generally used for these PECVD materials (i.e. the porogen approach) were then overcome in terms of porosity and pore size. Concerning gas detection, it is difficult to decorrelate between the impact of chemistry and porosity. Whatever, increasing porosity does not appear to be the only relevant parameter in order to increase these materials affinity at low concentrations.La détection de gaz est un enjeu de plus en plus important, aussi bien dans le domaine de la surveillance de la qualité de l’air -intérieur et extérieur- que dans le suivi de procédés. Cet enjeu est d’autant plus critique dans le cas des composés organiques volatiles (COVs) que leur impact sur la santé publique est avéré. Détecter et quantifier leur présence devient une problématique majeure et différentes solutions existent. L’une d’elles, basée sur le couplage d’une nano-poutre résonnante et d’une micro colonne de chromatographie, s’avère être une solution prometteuse. Ces deux dispositifs alliant sélectivité et grande sensibilité nécessitent cependant une fonctionnalisation à l’aide d’une couche sensible. Ces travaux se sont focalisés sur le développement de matériaux sensibles de la famille des SiOCH déposés en couche mince par dépôt chimique en phase vapeur assisté par plasma (PECVD). L’étude de la réponse sous gaz des différents matériaux synthétisés au cours de cette thèse a été réalisée à l’aide de microbalances à cristal de quartz (QCM). Les mesures obtenues ont ensuite été corrélées à un modèle simple permettant de proposer une interprétation de l’interaction entre les SiOCH et le gaz d’intérêt, à l’équilibre mais aussi en régime dépendant du temps. La première partie de l’étude montre l’impact de la composition chimique de ces matériaux sur leur affinité envers un gaz représentatif des COVs aromatiques : le toluène. En s’appuyant sur des caractérisations physico-chimiques, le rôle de différentes liaisons chimiques ainsi que celui de l’hydrophobie des couches minces sur l’interaction avec le gaz d’intérêt a été analysé. Ces travaux montrent qu’un compromis entre composition chimique et hydrophobie doit être trouvé afin de préserver affinité et temps de réponse des SiOCH. L’étude de l’influence de la porosité sur la sensibilité a ensuite été abordée dans un second temps. Pour cela, des procédés originaux de réalisation de couches minces poreuses ont été développés afin de proposer de nouveaux matériaux poreux et d’accroître leur sensibilité vis-à-vis du toluène. Les limites de l’approche soustractive généralement utilisée pour ce type de matériau (i.e. l’approche porogène) ont pu ainsi être dépassées en termes de porosité et de tailles de pores. Concernant la détection de gaz, il s’avère difficile de décorréler l’impact de la chimie de celui de la porosité. Quoi qu’il en soit, l’augmentation de la porosité ouverte n’apparait pas comme le seul paramètre pertinent pour accroître la sensibilité de ces matériaux aux faibles concentrations
    corecore