2,082 research outputs found

    Hypermedia learning and prior knowledge: Domain expertise vs. system expertise

    Get PDF
    Prior knowledge is often argued to be an important determinant in hypermedia learning, and may be thought of as including two important elements: domain expertise and system expertise. However, there has been a lack of research considering these issues together. In an attempt to address this shortcoming, this paper presents a study that examines how domain expertise and system expertise influence students’ learning performance in, and perceptions of, a hypermedia system. The results indicate that participants with lower domain knowledge show a greater improvement in their learning performance than those with higher domain knowledge. Furthermore, those who enjoy using the Web more are likely to have positive perceptions of non-linear interaction. Discussions on how to accommodate the different needs of students with varying levels of prior knowledge are provided based on the results

    The relationship between web enjoyment and student perceptions and learning using a web-based tutorial

    Get PDF
    Web enjoyment has been regarded as a component of system experience. However, there has been little targeted research considering the role of web enjoyment alone in student learning using web-based systems. To address this gap, this study aims to examine the influence of web enjoyment on learning performance and perceptions by controlling system experience as a variable in the study. 74 students participated in the study, using a web-based tutorial covering subject matter in the area of 'Computation and algorithms'. Their learning performance was assessed with a pre-test and a post-test and their learning perceptions were evaluated with a questionnaire. The results indicated that there are positive relationships between the levels of web enjoyment and perceived usefulness and non-linear navigation for users with similar, significant levels of system experience. The implications of these findings in relation to web-based learning are explored and ways in which the needs of students who report different levels of web enjoyment might be met are discussed

    Methodological issues in using sequential representations in the teaching of writing

    Get PDF
    This study looks at a specific application of Ainsworth’s conceptual framework for learning with multiple representations in the context of using multiple sequential graphic organizers that are student‐generated for a process‐writing task. Process writing refers to writing that consists of multiple drafts. It may be a process of re‐writing without feedback or re‐writing based on feedback where the teacher or peers will provide feedback on the original draft and then the students will revise their writing based on the feedback given. The objective was to explore how knowledge of students’ cognitive processes when using multiple organizers can inform the teaching of writing. The literature review analyzes the interaction of the design, function and task components of the framework; culminating in instructional approaches for using multiple organizers for classes with students of different writing abilities. Extended implications for designers of concept mapping tools based on these approaches are provided

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    Doctor of Philosophy

    Get PDF
    dissertationSelf-regulated learning with online resources is a prevalent experience for today's learners, but these online learning opportunities frequently yield disappointing results when considering students' learning outcomes. The current research examined the impact of different forms of navigational scaffolds to help learners self-regulate their learning behaviors as they attempted to form well-organized, conceptual knowledge from varied online resources. Experiment 1 examined scaffolds for two potentially useful learning paths: conceptual coherence (depicted in a graphical overview of the domain) and foundational knowledge (depicted via visual cues about the importance of a concept to the domain). Results revealed no effects of a conceptual coherence scaffold on participants' self-regulated learning behaviors or learning outcomes. When foundational knowledge scaffolds were present, participants used more effective self-regulated learning strategies on higher priority concepts, but learning did not improve. Participants utilized prescribed learning paths only 63% of the time and thus may not have benefited from them. Experiment 2 investigated the impact of using a dynamic, automatic scaffold to structure learning paths through the online resources; both learning path (coherence vs. foundational) and amount of learner navigational control (low vs. high) were varied. Results revealed that when a foundational knowledge path was enforced, learners executed more effective self-regulated learning strategies and gained a deeper understanding of conceptual relationships. Overall findings suggest that learners working with digital resources benefit from navigational guidance that helps them focus on foundational ideas in an online, self-regulated environment

    The effect of leads on cognitive load and learning in a conceptually rich hypertext environment

    Get PDF
    The purpose of this experiment was to determine whether leads affect cognitive load and learning from conceptually rich hypertext. Measures of cognitive load included self-report of mental effort, reading time, and event-related desynchronization percentage of alpha, beta, and theta brain wave rhythms. Conceptual and structural knowledge tests, as well as a recall measure were used to determine learning performance. Measures of learners\u27 reading ability, prior knowledge, and metacognitive awareness were employed to establish the effect of individual differences on cognitive load and learning from traditional and lead-augmented hypertext. Results demonstrated that while leads appeared to reduce brain wave activity associated with split attention, processing of redundant information contained in hypertext nodes may have increased extraneous cognitive load, and decreased germane load that is required for learning to take place. Whereas the benefits of leads relative to cognitive load and learning may have been mediated by the redundancy effect, learners with better developed metacognitive skills tended to use leads as a tool to review information in the linked nodes while revisiting content in the primary text passage. Limitations of the currently available cognitive load measures are discussed as applied to direct assessment of this theoretical construct

    Cognitive load theory, educational research, and instructional design: some food for thought

    Get PDF
    Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems that optimize the use of working memory capacity and avoid cognitive overload. Cognitive load theory has advanced educational research considerably and has been used to explain a large set of experimental findings. This article sets out to explore the open questions and the boundaries of cognitive load theory by identifying a number of problematic conceptual, methodological and application-related issues. It concludes by presenting a research agenda for future studies of cognitive load
    corecore