1,196 research outputs found

    A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs

    Get PDF
    This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson’s ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated

    Inverse-Consistent Determination of Young\u27s Modulus of Human Lung

    Get PDF
    Human lung undergoes respiration-induced deformation due to sequential inhalation and exhalation. Accurate determination of lung deformation is crucial for tumor localization and targeted radiotherapy in patients with lung cancer. Numerical modeling of human lung dynamics based on underlying physics and physiology enables simulation and virtual visualization of lung deformation. Dynamical modeling is numerically complicated by the lack of information on lung elastic behavior, structural heterogeneity as well as boundary constrains. This study integrates physics-based modeling and image-based data acquisition to develop the patient-specific biomechanical model and consequently establish the first consistent Young\u27s modulus (YM) of human lung. This dissertation has four major components: (i) develop biomechanical model for computation of the flow and deformation characteristics that can utilize subject-specific, spatially-dependent lung material property; (ii) develop a fusion algorithm to integrate deformation results from a deformable image registration (DIR) and physics-based modeling using the theory of Tikhonov regularization; (iii) utilize fusion algorithm to establish unique and consistent patient specific Young\u27s modulus and; (iv) validate biomechanical model utilizing established patient-specific elastic property with imaging data. The simulation is performed on three dimensional lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of human subjects. The heterogeneous Young\u27s modulus is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The biomechanical model adequately predicts the spatio-temporal lung deformation, consistent with data obtained from imaging. The accuracy of the numerical solution is enhanced through fusion with the imaging data beyond the classical comparison of the two sets of data. Finally, the fused displacement results are used to establish unique and consistent patient-specific elastic property of the lung

    Optimization of Decision Making in Personalized Radiation Therapy using Deformable Image Registration

    Get PDF
    Cancer has become one of the dominant diseases worldwide, especially in western countries, and radiation therapy is one of the primary treatment options for 50% of all patients diagnosed. Radiation therapy involves the radiation delivery and planning based on radiobiological models derived primarily from clinical trials. Since 2015 improvements in information technologies and data storage allowed new models to be created using the large volumes of treatment data already available and correlate the actually delivered treatment with outcomes. The goals of this thesis are to 1) construct models of patient outcomes after receiving radiation therapy using available treatment and patient parameters and 2) provide a method to determine real accumulated radiation dose including the impact of registration uncertainties. In Chapter 2, a model was developed predicting overall survival for patients with hepatocellular carcinoma or liver metastasis receiving radiation therapy. These models show which patients benefit from curative radiation therapy based on liver function, and the survival benefit of increased radiation dose on survival. In Chapter 3, a method was developed to routinely evaluate deformable image registration (DIR) with computer-generated landmark pairs using the scale-invariant feature transform. The method presented in this chapter created landmark sets for comparing lung 4DCT images and provided the same evaluation of DIR as manual landmark sets. In Chapter 4, an investigation was performed on the impact of DIR error on dose accumulation using landmarked 4DCT images as the ground truth. The study demonstrated the relationship between dose gradient, DIR error and dose accumulation error, and presented a method to determine error bars on the dose accumulation process. In Chapter 5, a method was presented to determine quantitatively when to update a treatment plan during the course of a multi-fraction radiation treatment of head and neck cancer. This method investigated the ability to use only the planned dose with deformable image registration to predict dose changes caused by anatomical deformations. This thesis presents the fundamental elements of a decision support system including patient pre-treatment parameters and the actual delivered dose using DIR while considering registration uncertainties

    Effect of deformable registration uncertainty on lung SBRT dose accumulation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134767/1/mp8412.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134767/2/mp8412_am.pd

    Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation

    Full text link
    Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT (CBCT) scans has become a serious concern. Patient-specific imaging dose calculation has been proposed for the purpose of dose management. While Monte Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers from low computational efficiency. In response to this problem, we have successfully developed a MC dose calculation package, gCTD, on GPU architecture under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray imaging dose received by a patient during a CT or CBCT scan. Techniques have been developed particularly for the GPU architecture to achieve high computational efficiency. Dose calculations using CBCT scanning geometry in a homogeneous water phantom and a heterogeneous Zubal head phantom have shown good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In terms of improved efficiency, it is found that gCTD attains a speed-up of ~400 times in the homogeneous water phantom and ~76.6 times in the Zubal phantom compared to EGSnrc. As for absolute computation time, imaging dose calculation for the Zubal phantom can be accomplished in ~17 sec with the average relative standard deviation of 0.4%. Though our gCTD code has been developed and tested in the context of CBCT scans, with simple modification of geometry it can be used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl
    • 

    corecore