283 research outputs found

    Transient Cardiovascular Hemodynamics In A Patient-Specific Arterial System

    Get PDF
    The ultimate goal of the present study is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present study a full cardiovascular experimental phantom and digital phantom (CFD model) was fabricated to study: (1) the effects of local hemodynamics on global hemodynamics, (2) the effects of transition from bed-rest to upright position, and (3) transport of dye (drug delivery) in the arterial system. Computational three dimensional (3-D) models (designs A, B, and C) stents were also developed to study the effects of stent design on hemodynamic flow and the effects of drug deposition into the arterial wall. The experimental phantom used in the present study is the first system reported in literature to be used for hemodynamic assessment in static and orthostatic posture changes. Both the digital and experimental phantom proved to provide different magnitudes of wall shear and normal stresses in sections where previous studies have only analyzed single arteries. The dye mass concentration study for the digital and experimental cardiovascular phantom proved to be useful as a surrogate for medical drug dispersion. The dye mass concentration provided information such as transition time and drug trajectory paths. For the stent design CFD studies, hemodynamic results (wall shear stress (WSS), normal stress, and vorticity) were assessed to determine if simplified stented geometries can be used as a surrogate for patient-specific geometries and the role of stent design on flow. Substantial differences in hemodynamic parameters were found to exist which confirms the need for patient-specific modeling. For drug eluting stent studies, the total deposition time for the drug into the arterial wall was approximately 3.5 months

    Morphological and hemodynamical alterations in brachial artery and cephalic vein. An image‐based study for preoperative assessment for vascular access creation

    Get PDF
    The current study aims to computationally evaluate the effect of right upper arm position on the geometric and hemodynamic characteristics of the brachial artery (BA) and cephalic vein (CV) and, furthermore, to present in detail the methodology to characterise morphological and hemodynamical healthy vessels. Ten healthy volunteers were analysed in two configurations, the supine (S) and the prone (P) position. Lumen 3D surface models were constructed from images acquired from a non-contrast MRI sequence. Then, the models were used to numerically compute the physiological range of geometric (n = 10) and hemodynamic (n = 3) parameters in the BA and CV. Geometric parameters such as curvature and tortuosity, and hemodynamic parameters based on wall shear stress (WSS) metrics were calculated with the use of computational fluid dynamics. Our results highlight that changes in arm position had a greater impact on WSS metrics of the BA by altering the mean and maximum blood flow rate of the vessel. Whereas, curvature and tortuosity were found not to be significantly different between positions. Inter-variability was associated with antegrade and retrograde flow in BA, and antegrade flow in CV. Shear stress was low and oscillatory shear forces were negligible. This data suggests that deviations from this state may contribute to the risk of accelerated intimal hyperplasia of the vein in arteriovenous fistulas. Therefore, preoperative conditions coupled with post-operative longitudinal data will aid the identification of such relationships

    The Atheroprotective Nature of Helical Flow in Coronary Arteries

    Get PDF
    Arterial hemodynamics is markedly characterized by the presence of helical flow patterns. Previous observations suggest that arterial helical blood flow is of physiological significance, and that its quantitative analysis holds promise for clinical applications. In particular, it has been reported that distinguishable helical flow patterns are potentially atheroprotective in the carotid bifurcation as they suppress flow disturbances. In this context, there is a knowledge gap about the physiological significance of helical flow in coronary arteries, a prominent site of atherosclerotic plaque formation. This study aimed at the quantitative assessment of helical blood flow in coronary arteries, and to investigate its possible associations with vascular geometry and with atherogenic wall shear stress (WSS) phenotypes in a representative sample of 30 swine coronary arteries. This study demonstrates that in coronary arteries: (1) the hemodynamics is characterized by counter-rotating bi-helical flow structures; (2) unfavorable conditions of WSS are strongly and inversely associated with helicity intensity (r=-0.91; p<0.001), suggesting an atheroprotective role for helical flow in the coronary tree; (3) vascular torsion dictates helical flow features (r=0.64; p<0.001). The findings of this work support future studies on the role of helical flow in atherogenesis in coronary arteries

    Integration of anatomical and hemodynamical information in magnetic resonance angiography

    Get PDF
    +118hlm.;24c

    Shear-promoted drug encapsulation into red blood cells: a CFD model and μ-PIV analysis

    Get PDF
    The present work focuses on the main parameters that influence shear-promoted encapsulation of drugs into erythrocytes. A CFD model was built to investigate the fluid dynamics of a suspension of particles flowing in a commercial micro channel. Micro Particle Image Velocimetry (μ-PIV) allowed to take into account for the real properties of the red blood cell (RBC), thus having a deeper understanding of the process. Coupling these results with an analytical diffusion model, suitable working conditions were defined for different values of haematocrit

    Cerebrovascular hemodynamics in older adults: Associations with lifestyle, peripheral vascular health and functional decline

    Get PDF
    In today’s aging population, cerebrovascular health plays a pivotal role in maintaining independence. The identification of early markers of change might help to plan more appropriate preventative and/or therapeutic measures. Recent focus has been placed on the relationship between peripheral vascular characteristics and cerebral hemodynamics. Given the compliant nature of the cerebral circulation, examination of passive properties, including critical closing pressure (CrCP) and resistance area product (RAP), might provide sensitive information about early functional changes. The purpose of this thesis was to provide a comprehensive view of peripheral vascular and cerebrovascular regulation in community-living older adults. In doing so, the thesis covered a spectrum, ranging from an examination of lifestyle factors, including habitual physical activity and sleep quality, to the impact of cerebrovascular health on functional status, characterized by gait speed. Key findings included the observation that while participants showed the ability to regulate cerebral blood flow (CBF) appropriately in most circumstances, the underlying mechanisms used to achieve this regulation was dependent on baseline vascular tone. During sit-to-stand transitions, individuals with lower baseline resistance relied primarily on fluctuations in RAP, which have been suggested to more closely reflect myogenic pathways. In contrast, individuals with elevated resistance had lower baseline CBF and relied relatively more on fluctuations in CrCP during the dynamic transition. The greater reliance on CrCP might indicate that these individuals were required to tap further into reserve pools to avoid hypoperfusion during the transition. Notably, those who exhibited a smaller dynamic RAP response during the posture change also had slower gait speed and higher occurrence of falls over the past year. These results provide evidence that passive cerebrovascular dynamics are sensitive markers linking peripheral and cerebrovascular properties with functional consequences for brain health in the elderly

    Impact of Acute Uninterrupted Sitting on Cerebrovascular Hemodynamics

    Get PDF
    Reductions in brain blood flow are associated with reduced cognitive function and cerebrovascular disease. Acute periods of uninterrupted sitting can lead to endothelial dysfunction, namely due to a reduction in shear stress and subsequent reduction in nitric oxide bioavailability. Little is known of the impact of sitting on brain health. The purpose was to determine the total brain blood flow response following a 60-minute bout of uninterrupted sitting. Using a parallel design, this study evaluated the impact of 60-minutes of sitting on total brain blood flow. Fifteen participants (n=15; age=24 ± 1yr; BMI=25 ± 1 kg/m2) sat, uninterrupted, for 60-minutes during the SIT protocol. To ascertain the contribution of blood pooling effects on total brain blood flow, ten participants (n=10; age=23±2yr; BMI=27±4 kg/m2) sat in a modified sitting (MOD) for 60-minutes. Finally, thirteen participants (n=13; age=23±3yr; BMI=26±4 kg/m2) remained supine for the duration of the 60-minutes as a time-control (TC). Brain blood flow was quantified through Doppler-ultrasound measurements of blood flow through the internal carotid (ICA) and vertebral (VA) arteries: (ICA blood flow + VA blood flow) × 2. Following the 60-minutes of sitting (SIT), there was a significant reduction in brain blood flow with time (p=0.001, η p 2 =0.05). Total brain blood flow did not significantly change in MOD (p=0.69, η p 2 =0.05) or TC (p=0.06, η p 2 =0.58) conditions. These findings indicate 60-minutes of sitting may alter cerebrovascular hemodynamics characterized by a reduction in total brain blood flow

    Cerebrovascular Hemodynamics, Postural Stability, Gait Dynamics, and Falls in Older Adults

    Get PDF
    Injurious falls in community-living older adults are associated with standing up suggesting that cerebral hypoperfusion following a postural transition might be a contributing factor. A large population study has recently indicated that one fifth of older adults do not fully recover BP after standing from a supine posture. The purposes of this thesis were to provide a comprehensive assessment between posture-related cerebral hypoperfusion and impaired postural stability, altered gait and falls in older adults. This thesis measured arterial blood pressure regulation and cerebral tissue oxygenation (tSO2) during orthostatic stressors including 3 different transitions to standing in older adults (n=77, ages 69-100 years, average = 86.6±6.6 years) and 2 different transitions to walking in a sub-group of these older adults (n=27, ages 71-101 years, average = 86.8±5.3 years). Primary results included the finding that, like the altered blood pressure responses, 19.5% of older adults had low tSO2 on standing, and they had poorer postural stability. It was also found that a brief 10-s sitting-pause time improved tSO2 and postural stability when performing a supine-sit-stand. Prospective tracking of older adults for 6-months revealed a trend to an increased likelihood of a future fall in those who had the greatest drop in tSO2 on standing. Older adults with low tSO2 (≤60%) during walking had compromised gait dynamics (increased step-step variability). Although gait speed was not directly related to reduced tSO2, the increased mean gait cycle time and stance time associated with changes in OxHb of the older adults with low tSO2 were significantly associated with reduced gait speed. Increased vascular stiffness was associated with lower CBF and altered cerebrovascular hemodynamics while walking as well as lower gait speed. Collectively, the findings from these two investigations support a relationship between cerebral hypoperfusion induced by transitions from supine to upright posture and compromised standing and walking stability with consequences for increased fall risk
    corecore