86 research outputs found

    Pulsed laser deposition of Bismuth Telluride compounds for human body energy scavengers

    Get PDF
    The world wide research interest in Bismuth Telluride thin films is due to the fact that they are the most commonly efficient thermoelectric materials at temperatures as low as room temperature, which is typically suitable for implementing such thin films through the fabrication of miniaturized thermoelectric generators and human body energy scavengers. This work aims to characterize various Bismuth Telluride -based thin films deposited by Pulsed Laser Deposition technique in order to optimize their thermoelectric performance represented in their thermoelectric figures of merit. This has been achieved by investigating the electrical and thermoelectric properties of the deposited thin films as well as studying the structural properties of such thin films that is necessary for future micromachining and fabrication of energy scavengers; the results of this effort are really promising. The first chapter is an introductory overview concerning thermoelectric effects and thermoelectric generators. The second chapter deals with the different deposition techniques and the reasoning behind the employment of PLD to deposit Bismuth Telluride thin films. The third chapter includes some of Bismuth Telluride chemical and physical properties in addition to a literature survey of what other groups have already achieved concerning this material. The fourth chapter covers all the experiments and includes the results of this work. Finally, the fifth chapter includes the summary, conclusion and recommendation for future progress in this topic

    Crystal Growth and Characterization of Bulk Sb2Te3Topological Insulator

    Full text link
    The Sb2Te3 crystals are grown using the conventional self flux method via solid state reaction route, by melting constituent elements (Sb and Te) at high temperature (850 C), followed by slow cooling (2 C per hour).The weak anti localization (WAL) related low field (2 Tesla) magneto-conductance at low temperatures (2.5 K and 20 K) has been analysed and discussed using the Hikami- Larkin - Nagaoka (HLN) model. Summarily, the short letter reports an easy and versatile method for crystal growth of bulk Sb2Te3 topological insulator (TI) and its brief physical property characterization.Comment: 18 Pages Text + Figs: Accepted Mat. Res. Exp. (May 2018

    Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films

    Get PDF
    Bi2Te3-based alloys are known to have outstanding thermoelectric properties. Although structure-property relations have been studied, still, detailed analysis of the atomic and nano-scale structure of Bi2Te3 thin film in relation to their thermoelectric properties remains poorly explored. Herein, highly-textured (HT) and single-crystal-like (SCL) Bi2Te3 films have been grown using pulsed laser deposition (PLD) on Si wafer covered with (native or thermal) SiOx and mica substrates. All films are highly textured with c-axis out-of-plane, but the in-plane orientation is random for the films grown on oxide and single-crystal-like for the ones grown on mica. The power factor of the film on thermal oxide is about four times higher (56.8 mu W.cm(-1).K-2) than that of the film on mica (12.8 mu W.cm(-1).K-2), which is comparable to the one of the polycrystalline ingot at room temperature (RT). Reduced electron scattering in the textured thin films results in high electrical conductivity, where the SCL film shows the highest conductivity. However, its Seebeck coefficient shows a low value. The measured properties are correlated with the atomic structure details unveiled by scanning transmission electron microscopy. For instance, the high concentration of stacking defects observed in the HT film is considered responsible for the increase of Seebeck coefficient compared to the SCL film. This study demonstrates the influence of nanoscale structural effects on thermoelectric properties, which sheds light on tailoring thermoelectric thin films towards high performance

    Recent Advances in BiVO4- and Bi2Te3-Based Materials for High Efficiency-Energy Applications

    Get PDF
    This chapter provides recent progress in developments of BiVO4- and Bi2Te3-based materials for high efficiency photoelectrodes and thermoelectric applications. The self-assembling nanostructured BiVO4-based materials and their heterostructures (e.g., WO3/BiVO4) are developed and studied toward high efficiency photoelectrochemical (PEC) water splitting via engineering the crystal and band structures and charge transfer processes across the heteroconjunctions. In addition, crystal and electronic structures, optical properties, and strategies to enhance photoelectrochemical properties of BiVO4 are presented. The nanocrystalline, nanostructured Bi2Te3-based thin films with controlled structure, and morphology for enhanced thermoelectric properties are also reported and discussed in details. We demonstrate that BiVO4-based materials and Bi2Te3-based thin films play significant roles for the developing renewable energy

    Van der Waals Epitaxy of Pulsed Laser Deposited Antimony Thin Films on Lattice-matched and Amorphous Substrates

    Get PDF
    Monatomic antimony thin films have recently attracted attention for applications in phase change memory, nanophotonics, and 2D materials. Although some promising results have been reported, the true potential of Sb thin films is still hindered by the scalability issue and the lack of reliable bottom-up production. Here we demonstrate the growth of Sb thin films on a lattice-matching and amorphous substrates using pulsed laser deposition (PLD). C-axis out-of-plane textured Sb thin films were successfully deposited on Sb2Te3 and SiO2/Si3N4 substrates. In the case of growth on Sb2Te3, we show that an intermediate phase is formed at the Sb2Te3-Sb interface playing a crucial role in forming a solid coupling and thus maintaining epitaxy leading to the production of high-quality Sb thin films. A 3 - 4 nm amorphous Sb seed layer was used to induce texture and suitable surface termination for the growth of Sb thin films on amorphous substrates. The deposition parameters were fine-tuned, and the growth was monitored in situ by a Reflective High Energy Electron Diffraction (RHEED). Scanning/Transmission Electron Microscopy (S/TEM) unveiled the local structure of produced films showing the formation of êžµ-phase Sb thin films. Our results demonstrate the feasibility to produce very smooth high-quality antimony thin films with uniform coverage, from few layers to large thicknesses, using pulsed laser deposition. We believe the results of our work on scalable and controllable Sb growth have the potential to open up research on phase-change materials and optoelectronics research

    Strain Relaxation in "2D/2D and 2D/3D Systems":Highly Textured Mica/Bi2Te3, Sb2Te3/Bi2Te3, and Bi2Te3/GeTe Heterostructures

    Get PDF
    Strain engineering as a method to control functional properties has seen in the last decades a surge of interest. Heterostructures comprising 2D-materials and containing van der Waals(-like) gaps were considered unsuitable for strain engineering. However, recent work on heterostructures based on Bi2Te3, Sb2Te3, and GeTe showed the potential of a different type of strain engineering due to long-range mutual straining. Still, a comprehensive understanding of the strain relaxation mechanism in these telluride heterostructures is lacking due to limitations of the earlier analyses performed. Here, we present a detailed study of strain in two-dimensional (2D/2D) and mixed dimensional (2D/3D) systems derived from mica/Bi2Te3, Sb2Te3/Bi2Te3, and Bi2Te3/GeTe heterostructures, respectively. We first clearly show the fast relaxation process in the mica/Bi2Te3 system where the strain was generally transferred and confined up to the second or third van der Waals block and then abruptly relaxed. Then we show, using three independent techniques, that the long-range exponentially decaying strain in GeTe and Sb2Te3 grown on the relaxed Bi2Te3 and Bi2Te3 on relaxed Sb2Te3 as directly observed at the growth surface is still present within these three different top layers a long time after growth. The observed behavior points at immediate strain relaxation by plastic deformation without any later relaxation and rules out an elastic (energy minimization) model as was proposed recently. Our work advances the understanding of strain tuning in textured heterostructures or superlattices governed by anisotropic bonding
    • …
    corecore