5,799 research outputs found

    Steady-State movement related potentials for brain–computer interfacing

    Get PDF
    An approach for brain-computer interfacing (BCI) by analysis of steady-state movement related potentials (ssMRPs) produced during rhythmic finger movements is proposed in this paper. The neurological background of ssMRPs is briefly reviewed. Averaged ssMRPs represent the development of a lateralized rhythmic potential, and the energy of the EEG signals at the finger tapping frequency can be used for single-trial ssMRP classification. The proposed ssMRP-based BCI approach is tested using the classic Fisher's linear discriminant classifier. Moreover, the influence of the current source density transform on the performance of BCI system is investigated. The averaged correct classification rates (CCRs) as well as averaged information transfer rates (ITRs) for different sliding time windows are reported. Reliable single-trial classification rates of 88%-100% accuracy are achievable at relatively high ITRs. Furthermore, we have been able to achieve CCRs of up to 93% in classification of the ssMRPs recorded during imagined rhythmic finger movements. The merit of this approach is in the application of rhythmic cues for BCI, the relatively simple recording setup, and straightforward computations that make the real-time implementations plausible

    A large-scale evaluation framework for EEG deep learning architectures

    Full text link
    EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE SMC 2018 conferenc

    Motor imagery classification in Brain Computer Interface (BCI) based on EEG signal by using machine learning technique

    Get PDF
    This paper focuses on classification of motor imagery in Brain Computer Interface (BCI) by using classifiers from machine learning technique. The BCI system consists of two main steps which are feature extraction and classification. The Fast Fourier Transform (FFT) features is extracted from the electroencephalography (EEG) signals to transform the signals into frequency domain. Due to the high dimensionality of data resulting from the feature extraction stage, the Linear Discriminant Analysis (LDA) is used to minimize the number of dimension by finding the feature subspace that optimizes class separability. Five classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), NaĂŻve Bayes, Decision Tree and Logistic Regression are used in the study. The performance was tested by using Dataset 1 from BCI Competition IV which consists of imaginary hand and foot movement EEG data. As a result, SVM, Logistic Regression and NaĂŻve Bayes classifier achieved the highest accuracy with 89.09% in AUC measurement

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future

    Thought-controlled games with brain-computer interfaces

    Get PDF
    Nowadays, EEG based BCI systems are starting to gain ground in games for health research. With reduced costs and promising an innovative and exciting new interaction paradigm, attracted developers and researchers to use them on video games for serious applications. However, with researchers focusing mostly on the signal processing part, the interaction aspect of the BCIs has been neglected. A gap between classification performance and online control quality for BCI based systems has been created by this research disparity, resulting in suboptimal interactions that lead to user fatigue and loss of motivation over time. Motor-Imagery (MI) based BCIs interaction paradigms can provide an alternative way to overcome motor-related disabilities, and is being deployed in the health environment to promote the functional and structural plasticity of the brain. A BCI system in a neurorehabilitation environment, should not only have a high classification performance, but should also provoke a high level of engagement and sense of control to the user, for it to be advantageous. It should also maximize the level of control on user’s actions, while not requiring them to be subject to long training periods on each specific BCI system. This thesis has two main contributions, the Adaptive Performance Engine, a system we developed that can provide up to 20% improvement to user specific performance, and NeuRow, an immersive Virtual Reality environment for motor neurorehabilitation that consists of a closed neurofeedback interaction loop based on MI and multimodal feedback while using a state-of-the-art Head Mounted Display.Hoje em dia, os sistemas BCI baseados em EEG estĂŁo a começar a ganhar terreno em jogos relacionados com a saĂșde. Com custos reduzidos e prometendo um novo e inovador paradigma de interação, atraiu programadores e investigadores para usĂĄ-los em vĂ­deo jogos para aplicaçÔes sĂ©rias. No entanto, com os investigadores focados principalmente na parte do processamento de sinal, o aspeto de interação dos BCI foi negligenciado. Um fosso entre o desempenho da classificação e a qualidade do controle on-line para sistemas baseados em BCI foi criado por esta disparidade de pesquisa, resultando em interaçÔes subĂłtimas que levam Ă  fadiga do usuĂĄrio e Ă  perda de motivação ao longo do tempo. Os paradigmas de interação BCI baseados em imagĂ©tica motora (IM) podem fornecer uma maneira alternativa de superar incapacidades motoras, e estĂŁo sendo implementados no sector da saĂșde para promover plasticidade cerebral funcional e estrutural. Um sistema BCI usado num ambiente de neuro-reabilitação, para que seja vantajoso, nĂŁo sĂł deve ter um alto desempenho de classificação, mas tambĂ©m deve promover um elevado nĂ­vel de envolvimento e sensação de controlo ao utilizador. TambĂ©m deve maximizar o nĂ­vel de controlo nas açÔes do utilizador, sem exigir que sejam submetidos a longos perĂ­odos de treino em cada sistema BCI especĂ­fico. Esta tese tem duas contribuiçÔes principais, o Adaptive Performance Engine, um sistema que desenvolvemos e que pode fornecer atĂ© 20% de melhoria para o desempenho especĂ­fico do usuĂĄrio, e NeuRow, um ambiente imersivo de Realidade Virtual para neuro-reabilitação motora, que consiste num circuito fechado de interação de neuro-feedback baseado em IM e feedback multimodal e usando um Head Mounted Display de Ășltima geração
    • 

    corecore