3,021 research outputs found

    Modeling of wide-band MIMO radio channels based on NLoS indoor measurements

    Get PDF
    Link to published version (if available)

    Multi-user Linear Precoding for Multi-polarized Massive MIMO System under Imperfect CSIT

    Get PDF
    The space limitation and the channel acquisition prevent Massive MIMO from being easily deployed in a practical setup. Motivated by current deployments of LTE-Advanced, the use of multi-polarized antennas can be an efficient solution to address the space constraint. Furthermore, the dual-structured precoding, in which a preprocessing based on the spatial correlation and a subsequent linear precoding based on the short-term channel state information at the transmitter (CSIT) are concatenated, can reduce the feedback overhead efficiently. By grouping and preprocessing spatially correlated mobile stations (MSs), the dimension of the precoding signal space is reduced and the corresponding short-term CSIT dimension is reduced. In this paper, to reduce the feedback overhead further, we propose a dual-structured multi-user linear precoding, in which the subgrouping method based on co-polarization is additionally applied to the spatially grouped MSs in the preprocessing stage. Furthermore, under imperfect CSIT, the proposed scheme is asymptotically analyzed based on random matrix theory. By investigating the behavior of the asymptotic performance, we also propose a new dual-structured precoding in which the precoding mode is switched between two dual-structured precoding strategies with 1) the preprocessing based only on the spatial correlation and 2) the preprocessing based on both the spatial correlation and polarization. Finally, we extend it to 3D dual-structured precoding.Comment: accepted to IEEE Transactions on Wireless Communication

    Dual-Polarized Ricean MIMO Channels: Modeling and Performance Assessment

    Full text link
    In wireless communication systems, dual-polarized (DP) instead of single-polarized (SP) multiple-input multiple-output (MIMO) transmission is used to improve the spectral efficiency under certain conditions on the channel and the signal-to-noise ratio (SNR). In order to identify these conditions, we first propose a novel channel model for DP mobile Ricean MIMO channels for which statistical channel parameters are readily obtained from a moment-based channel decomposition. Second, we derive an approximation of the mutual information (MI), which can be expressed as a function of those statistical channel parameters. Based on this approximation, we characterize the required SNR for a DP MIMO system to outperform an SP MIMO system in terms of the MI. Finally, we apply our results to channel measurements at 2.53 GHz. We find that, using the proposed channel decomposition and the approximation of the MI, we are able to reproduce the (practically relevant) SNR values above which DP MIMO systems outperform SP MIMO systems.Comment: submitted to the IEEE Transactions on Communication

    Analysis of the Local Quasi-Stationarity of Measured Dual-Polarized MIMO Channels

    Full text link
    It is common practice in wireless communications to assume strict or wide-sense stationarity of the wireless channel in time and frequency. While this approximation has some physical justification, it is only valid inside certain time-frequency regions. This paper presents an elaborate characterization of the non-stationarity of wireless dual-polarized channels in time. The evaluation is based on urban macrocell measurements performed at 2.53 GHz. In order to define local quasi-stationarity (LQS) regions, i.e., regions in which the change of certain channel statistics is deemed insignificant, we resort to the performance degradation of selected algorithms specific to channel estimation and beamforming. Additionally, we compare our results to commonly used measures in the literature. We find that the polarization, the antenna spacing, and the opening angle of the antennas into the propagation channel can strongly influence the non-stationarity of the observed channel. The obtained LQS regions can be of significant size, i.e., several meters, and thus the reuse of channel statistics over large distances is meaningful (in an average sense) for certain algorithms. Furthermore, we conclude that, from a system perspective, a proper non-stationarity analysis should be based on the considered algorithm

    Experimental study of MIMO-OFDM transmissions at 94 GHz in indoor environments

    Get PDF
    Millimeter wave (mm-wave) frequencies have been proposed to achieve high capacity in 5G communications. Although meaningful research on the channel characteristics has been performed in the 28, 38and 60 GHz bands ─in both indoor and short-range scenarios─,only a small number of trials (experiments) have been carried out in other mm-wave bands. The objective of this work is to study the viability and evaluate the performance of the 94 GHz frequency band for MIMO-OFDM transmission in an indoor environment. Starting from a measurement campaign, the performance of MIMO algorithms is studied in terms of throughput for four different antenna configurations.This work was supported in part by the Ministerio de Economía y Competitividad MINECO, Spain under Grant TEC2016-78028-C3-2-P, and in part by the European FEDER funds

    Novel antenna configurations for wireless broadband vehicular communications

    Get PDF
    • …
    corecore