56,922 research outputs found

    Compensating for Large In-Plane Rotations in Natural Images

    Full text link
    Rotation invariance has been studied in the computer vision community primarily in the context of small in-plane rotations. This is usually achieved by building invariant image features. However, the problem of achieving invariance for large rotation angles remains largely unexplored. In this work, we tackle this problem by directly compensating for large rotations, as opposed to building invariant features. This is inspired by the neuro-scientific concept of mental rotation, which humans use to compare pairs of rotated objects. Our contributions here are three-fold. First, we train a Convolutional Neural Network (CNN) to detect image rotations. We find that generic CNN architectures are not suitable for this purpose. To this end, we introduce a convolutional template layer, which learns representations for canonical 'unrotated' images. Second, we use Bayesian Optimization to quickly sift through a large number of candidate images to find the canonical 'unrotated' image. Third, we use this method to achieve robustness to large angles in an image retrieval scenario. Our method is task-agnostic, and can be used as a pre-processing step in any computer vision system.Comment: Accepted at Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 201

    Convolutional Neural Networks over Tree Structures for Programming Language Processing

    Full text link
    Programming language processing (similar to natural language processing) is a hot research topic in the field of software engineering; it has also aroused growing interest in the artificial intelligence community. However, different from a natural language sentence, a program contains rich, explicit, and complicated structural information. Hence, traditional NLP models may be inappropriate for programs. In this paper, we propose a novel tree-based convolutional neural network (TBCNN) for programming language processing, in which a convolution kernel is designed over programs' abstract syntax trees to capture structural information. TBCNN is a generic architecture for programming language processing; our experiments show its effectiveness in two different program analysis tasks: classifying programs according to functionality, and detecting code snippets of certain patterns. TBCNN outperforms baseline methods, including several neural models for NLP.Comment: Accepted at AAAI-1

    Dynamic Steerable Blocks in Deep Residual Networks

    Get PDF
    Filters in convolutional networks are typically parameterized in a pixel basis, that does not take prior knowledge about the visual world into account. We investigate the generalized notion of frames designed with image properties in mind, as alternatives to this parametrization. We show that frame-based ResNets and Densenets can improve performance on Cifar-10+ consistently, while having additional pleasant properties like steerability. By exploiting these transformation properties explicitly, we arrive at dynamic steerable blocks. They are an extension of residual blocks, that are able to seamlessly transform filters under pre-defined transformations, conditioned on the input at training and inference time. Dynamic steerable blocks learn the degree of invariance from data and locally adapt filters, allowing them to apply a different geometrical variant of the same filter to each location of the feature map. When evaluated on the Berkeley Segmentation contour detection dataset, our approach outperforms all competing approaches that do not utilize pre-training. Our results highlight the benefits of image-based regularization to deep networks

    Context-Dependent Diffusion Network for Visual Relationship Detection

    Full text link
    Visual relationship detection can bridge the gap between computer vision and natural language for scene understanding of images. Different from pure object recognition tasks, the relation triplets of subject-predicate-object lie on an extreme diversity space, such as \textit{person-behind-person} and \textit{car-behind-building}, while suffering from the problem of combinatorial explosion. In this paper, we propose a context-dependent diffusion network (CDDN) framework to deal with visual relationship detection. To capture the interactions of different object instances, two types of graphs, word semantic graph and visual scene graph, are constructed to encode global context interdependency. The semantic graph is built through language priors to model semantic correlations across objects, whilst the visual scene graph defines the connections of scene objects so as to utilize the surrounding scene information. For the graph-structured data, we design a diffusion network to adaptively aggregate information from contexts, which can effectively learn latent representations of visual relationships and well cater to visual relationship detection in view of its isomorphic invariance to graphs. Experiments on two widely-used datasets demonstrate that our proposed method is more effective and achieves the state-of-the-art performance.Comment: 8 pages, 3 figures, 2018 ACM Multimedia Conference (MM'18
    corecore