29,079 research outputs found

    Comparative analysis of the differences between using LiDAR and contour-based DEMs for hydrological modeling of runoff generating debris flows in the Dolomites

    Get PDF
    Present work aims to explore the differences in hydrological modeling when using digital elevation models (DEMs) generated by points from LiDAR surveys and those digitized on the contour lines of the regional technical map (RTM) and their relevance for the simulation of debris flow triggering. Hydrological models for mountainous areas are usually based on digital elevation models (DEMs). DEMs are used to determine the flow path from each pixel, by which the basin is discretized, to the outlet. Hydrological simulations of runoff that triggered debris flows occurred in two rocky headwater basins of Dolomites, Fiames Dimai (area approximately 0.03 km2) and Cancia (area approximately 0.7 km2) are carried out using a DEM-based model designed for simulating runoff that descends from headwater areas. For each basin, the runoff is simulated using DEMs that are generated using points from LiDAR, and those digitized on the contour lines of the regional technical map, respectively. The results show that the peak discharge values corresponding to the simulations carried out using the LiDAR-based DEMs are higher than those corresponding to the simulations carried out using the RTM-based DEMs. Larger differences are observed for the Dimai basin, where the area corresponding to the RTM-based DEM is markedly smaller than the area corresponding to LiDAR-based DEM, whereas for the Cancia basin, the two areas are similar. Both the differences in the peak discharge and the basin area are due to the poor accuracy of the contour-based DEM (i.e., elevation accuracy), that is, a poor representation of the morphological features that leads to errors on the watershed divide and simplifications of the flow paths from each cell to the outlet. This result is highly relevant for estimating the triggering conditions of runoff generated debris flows. An incorrect simulated value of peak discharge can lead to errors both in planning countermeasures against debris flows and in predicting their occurrence

    Application of level spreader grass filter strips in south east Queensland, Australia for discharge reduction and passive irrigation

    Get PDF
    A WSUD practice that has been implemented in the United States is the level spreader–vegetated filter strip (LS-VFS). A typical LS-VFS incorporates a concrete channel with a level control weir (level spreader) that evenly distributes flow to a downslope vegetated filter strip designed for stormwater infiltration. The application of LS-VFS in Australia has generally received little attention. Given the absence of local information, this paper provides a 'proof of concept' analysis of LS-VFS as applied to South East Queensland conditions. The main focus of the analysis is to determine how compatible LS-VFS are in terms of meeting the prescribed WSUD frequent flow targets for urban stormwater discharges. Key LS-VFS design requirements were identified from the literature. A MUSIC model analysis was performed to evaluate the expected runoff reduction associated with a LS-VFS receiving stormwater from a Brisbane residential subdivision. Indicative criteria are proposed for design discharges, soil suitability and sizing of the filter strip dimensions. The potential of LS-VFS to provide 'passive' irrigation was recognized and the application of LS-VFS for sustaining green cover within urban open space was also analysed. Recommendations are made on further research and investigations on the Queensland application of LS-VFS technology

    Modelling water-harvesting systems in the arid south of Tunisia using SWAT

    Get PDF
    In many arid countries, runoff water-harvesting systems support the livelihood of the rural population. Little is known, however, about the effect of these systems on the water balance components of arid watersheds. The objective of this study was to adapt and evaluate the GIS-based watershed model SWAT (Soil Water Assessment Tool) for simulating the main hydrologic processes in arid environments. The model was applied to the 270-km(2) watershed of wadi Koutine in southeast Tunisia, which receives about 200 mm annual rain. The main adjustment for adapting the model to this dry Mediterranean environment was the inclusion of water-harvesting systems, which capture and use surface runoff for crop production in upstream subbasins, and a modification of the crop growth processes. The adjusted version of the model was named SWAT-WH. Model evaluation was performed based on 38 runoff events recorded at the Koutine station between 1973 and 1985. The model predicted that the average annual watershed rainfall of the 12-year evaluation period (209 mm) was split into ET (72%), groundwater recharge (22%) and outflow (6%). The evaluation coefficients for calibration and validation were, respectively, R-2 (coefficient of determination) 0.77 and 0.44; E (Nash-Sutcliffe coefficient) 0.73 and 0.43; and MAE (Mean Absolute Error) 2.6 mm and 3.0 mm, indicating that the model could reproduce the observed events reasonably well. However, the runoff record was dominated by two extreme events, which had a strong effect on the evaluation criteria. Discrepancies remained mainly due to uncertainties in the observed daily rainfall and runoff data. Recommendations for future research include the installation of additional rainfall and runoff gauges with continuous data logging and the collection of more field data to represent the soils and land use. In addition, crop growth and yield monitoring is needed for a proper evaluation of crop production, to allow an economic assessment of the different water uses in the watershed

    Weather radar for urban hydrological applications: lessons learnt and research needs identified from 4 pilot catchments in North-West Europe

    Get PDF
    International audienceThis study investigates the impact of rainfall estimates of different spatial resolutions on the hydraulic outputs of the models of four of the EU RainGain project’s pilot locations (the Cranbrook catchment (UK), the Herent catchment (Belgium), the MorĂ©e-Sausset catchment (France) and the Kralingen District (The Netherlands)). Two storm events, one convective and one stratiform, measured by a polarimetric X-band radar located in Cabauw (The Netherlands) were selected for analysis. The original radar estimates, at 100 m and 1 min resolutions, were aggregated to a spatial resolution of 1000 m. These estimates were then applied to the high-resolution semi-distributed hydraulic models of the four urban catchments, all of which have similar size (between 5 and 8 km2), but different morphological, hydrological and hydraulic characteristics. When doing so, methodologies for standardising rainfall inputs and making results comparable were implemented. The response of the different catchments to rainfall inputs of varying spatial resolution is analysed in the light of model configuration, catchment and storm characteristics. Rather surprisingly, the results show that for the two events under consideration the spatial resolution (i.e. 100 m vs 1000 m) of rainfall inputs does not have a significant influence on the outputs of urban drainage models. The present study will soon be extended to more storms as well as model structures and resolutions, with the final aim of identifying critical spatial-temporal resolutions for urban catchment modelling in relation to catchment and storm event characteristics

    A review of applied methods in Europe for flood-frequency analysis in a changing environment

    Get PDF
    The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines. Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate

    Developing a preliminary recharge model of the Nile Basin to help interpret GRACE data

    Get PDF
    GRACE data provides a new and exciting opportunity to gain a direct and independent measure of water mass variation on a regional scale, but the data must be combined with hydrological modelling to indicate in which part of the water cycle the mass change has occurred. Processing GRACE data through a series of spectral filters indicates a seasonal variation to gravity mass (±0.005 mGal) thought to relate to the downstream movement of water in the catchment, and delayed storage from groundwater, following the wet season in the upper catchment. To help interpret these data a groundwater recharge model was developed for the Nile Catchment using the model ZOODRM (a distributed modelling code for calculating spatial and temporal variations in groundwater recharge). ZOODRM was an appropriate model to use for this work, due to the lower data demands of the model, relative to other groundwater models, the ability of the model to use entirely remotely-sensed input data, and the added functionality of runoff routing. Rainfall (NOAA data) and ET data were sourced from the FEWS NET African Data Dissemination Service. Geological data was sourced from the digital geology map of the world, landuse data from the USGS and the DEM data from ESRI. Initial model results indicate groundwater recharge across the basin of 0-4mma-1, with obvious considerable spatial variability. The results indicate the importance of groundwater in storing rainfall, and releasing it slowly throughout the year in different parts of the catchment. Only by modelling this process can GRACE data be reliably interpreted hydrologically. Despite only a qualitative interpretation of the GRACE data having been achieved within this preliminary study, the work has indicated that the ZOODRM model can be used with entirely remotely-sensed data, and that sufficient data exists for the Nile Basin to construct a plausible recharge model. Future work is now required to properly calibrate the model to enable closer comparison of the Nile GRACE data

    Reservoir flood estimation: another look

    Get PDF

    Simulating the influences of groundwater on regional geomorphology using a distributed, dynamic, landscape evolution modelling platform

    Get PDF
    A dynamic landscape evolution modelling platform (CLiDE) is presented that allows a variety of Earth system interactions to be explored under differing environmental forcing factors. Representation of distributed surface and subsurface hydrology within CLiDE is suited to simulation at sub-annual to centennial time-scales. In this study the hydrological components of CLiDE are evaluated against analytical solutions and recorded datasets. The impact of differing groundwater regimes on sediment discharge is examined for a simple, idealised catchment, Sediment discharge is found to be a function of the evolving catchment morphology. Application of CLiDE to the upper Eden Valley catchment, UK, suggests the addition of baseflow-return from groundwater into the fluvial system modifies the total catchment sediment discharge and the spatio-temporal distribution of sediment fluxes during storm events. The occurrence of a storm following a period of appreciable antecedent rainfall is found to increase simulated sediment fluxes
    • 

    corecore