29,379 research outputs found

    Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective

    Full text link
    We consider a general multiple antenna network with multiple sources, multiple destinations and multiple relays in terms of the diversity-multiplexing tradeoff (DMT). We examine several subcases of this most general problem taking into account the processing capability of the relays (half-duplex or full-duplex), and the network geometry (clustered or non-clustered). We first study the multiple antenna relay channel with a full-duplex relay to understand the effect of increased degrees of freedom in the direct link. We find DMT upper bounds and investigate the achievable performance of decode-and-forward (DF), and compress-and-forward (CF) protocols. Our results suggest that while DF is DMT optimal when all terminals have one antenna each, it may not maintain its good performance when the degrees of freedom in the direct link is increased, whereas CF continues to perform optimally. We also study the multiple antenna relay channel with a half-duplex relay. We show that the half-duplex DMT behavior can significantly be different from the full-duplex case. We find that CF is DMT optimal for half-duplex relaying as well, and is the first protocol known to achieve the half-duplex relay DMT. We next study the multiple-access relay channel (MARC) DMT. Finally, we investigate a system with a single source-destination pair and multiple relays, each node with a single antenna, and show that even under the idealistic assumption of full-duplex relays and a clustered network, this virtual multi-input multi-output (MIMO) system can never fully mimic a real MIMO DMT. For cooperative systems with multiple sources and multiple destinations the same limitation remains to be in effect.Comment: version 1: 58 pages, 15 figures, Submitted to IEEE Transactions on Information Theory, version 2: Final version, to appear IEEE IT, title changed, extra figures adde

    Half-Duplex Relaying for the Multiuser Channel

    Full text link
    This work focuses on studying the half-duplex (HD) relaying in the Multiple Access Relay Channel (MARC) and the Compound Multiple Access Channel with a Relay (cMACr). A generalized Quantize-and-Forward (GQF) has been proposed to establish the achievable rate regions. Such scheme is developed based on the variation of the Quantize-and-Forward (QF) scheme and single block with two slots coding structure. The results in this paper can also be considered as a significant extension of the achievable rate region of Half-Duplex Relay Channel (HDRC). Furthermore, the rate regions based on GQF scheme is extended to the Gaussian channel case. The scheme performance is shown through some numerical examples.Comment: 7 pages, 4 figures, conference pape

    Capacity Theorems for the Fading Interference Channel with a Relay and Feedback Links

    Full text link
    Handling interference is one of the main challenges in the design of wireless networks. One of the key approaches to interference management is node cooperation, which can be classified into two main types: relaying and feedback. In this work we consider simultaneous application of both cooperation types in the presence of interference. We obtain exact characterization of the capacity regions for Rayleigh fading and phase fading interference channels with a relay and with feedback links, in the strong and very strong interference regimes. Four feedback configurations are considered: (1) feedback from both receivers to the relay, (2) feedback from each receiver to the relay and to one of the transmitters (either corresponding or opposite), (3) feedback from one of the receivers to the relay, (4) feedback from one of the receivers to the relay and to one of the transmitters. Our results show that there is a strong motivation for incorporating relaying and feedback into wireless networks.Comment: Accepted to the IEEE Transactions on Information Theor

    Spectral Efficiency of Random Time-Hopping CDMA

    Full text link
    Traditionally paired with impulsive communications, Time-Hopping CDMA (TH-CDMA) is a multiple access technique that separates users in time by coding their transmissions into pulses occupying a subset of NsN_\mathsf{s} chips out of the total NN included in a symbol period, in contrast with traditional Direct-Sequence CDMA (DS-CDMA) where Ns=NN_\mathsf{s}=N. This work analyzes TH-CDMA with random spreading, by determining whether peculiar theoretical limits are identifiable, with both optimal and sub-optimal receiver structures, in particular in the archetypal case of sparse spreading, that is, Ns=1N_\mathsf{s}=1. Results indicate that TH-CDMA has a fundamentally different behavior than DS-CDMA, where the crucial role played by energy concentration, typical of time-hopping, directly relates with its intrinsic "uneven" use of degrees of freedom.Comment: 26 pages, 13 figure

    Equalization of multi-Gb/s chip-to-chip interconnects affected by manufacturing tolerances

    Get PDF
    Electrical chip-to-chip interconnects suffer from considerable intersymbol interference at multi-Gb/s data rates, due to the frequency-dependent attenuation. Hence, reliable communication at high data rates requires equalization, to compensate for the channel response. As these interconnects are prone to manufacturing tolerances, the equalizer must be adjusted to each specific channel realization to perform optimally. We adopt a reduced-complexity equalization scheme where (part of) the equalizer is fixed, by involving the channel statistics into the equalizer derivation. For a 10 cm on-board microstrip interconnect with a 10% tolerance on its parameters, we point out that 2-PAM transmission using a fixed prefilter and an adjustable feedback filter, both with few taps, yields only a moderate bit error rate degradation, compared to the all-adjustable equalizer; at a bit error rate of 1e-12 these degradations are about 1.1  dB and 3  dB, when operating at 20 Gb/s and 80 Gb/s, respectively

    Effect of Synchronizing Coordinated Base Stations on Phase Noise Estimation

    Get PDF
    In this paper, we study the problem of oscillator phase noise (PN) estimation in coordinated multi-point (CoMP) transmission systems. Specifically, we investigate the effect of phase synchronization between coordinated base stations (BSs) on PN estimation at the user receiver (downlink channel). In this respect, the Bayesian Cram\'er-Rao bound for PN estimation is derived which is a function of the level of phase synchronization between the coordinated BSs. Results show that quality of BS synchronization has a significant effect on the PN estimation

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Rashba Spin Interferometer

    Full text link
    A spin interferometer utilizing the Rashba effect is proposed. The novel design is composed of a one-dimensional (1D) straight wire and a 1D half-ring. By calculating the norm of the superposed wave function, we derive analytical expressions to describe the spin interference spectrum as a function of the Rashba coupling strength. Presented spin interference results are identified to include (i) the quantum-mechanical 4pi rotation effect, (ii) geometric effect, and (iii) Shubnikov-de Haas-like beating effect.Comment: 3 pages, 3 figures, appears in the proceedings of the 10th Joint MMM/Intermag Conferenc
    • …
    corecore