2,101 research outputs found

    Coherence-Multiplexed Optical RF Feeder Networks

    Get PDF
    An optical RF feeding system for wireless access is proposed, in which the radio access points are distinguished by means of coherence multiplexing (CM). CM is a rather unknown and potentially inexpensive optical code division multiple access technique, which is particularly suitable for relatively short-range applications with moderate transmission bandwidth requirements. Subcarrier multiplexing (SCM) can possibly be used on top of CM, either as single-channel or multichannel SCM. The performances of the resulting distribution networks are analyzed, incorporating the effect of chromatic dispersion, optical beat noise, shot noise, thermal noise, and—in the case of multichannel SCM—intermodulation distortion. The results of the IEEE 802.11b standard for wireless LAN.\u

    Pulse confinement in optical fibers with random dispersion

    Full text link
    Short range correlated uniform noise in the dispersion coefficient, inherent in many types of optical fibers, broadens and eventually destroys all initially ultra-short pulses. However, under the constraint that the integral of the random component of the dispersion coefficient is set to zero, or pinned, periodically or quasi-periodically along the fiber, the nature of the pulse propagation changes dramatically. For the case that randomness is added to constant positive dispersion, the pinning restriction significantly reduces pulse broadening. If the randomness is added to piecewise constant periodic dispersion, the pinning may even provide probability distributions of pulse parameters that are numerically indistinguishable from the statistically steady case. The pinning method can be used to both manufacture better fibers and upgrade existing fiber links.Comment: 4 pages, 2 figure

    Digital radio over fibre for future broadband wireless access network solution

    Get PDF
    Copyright @ 2010 IEEEDigital systems are more flexible and environment-process-tolerant than analogue systems. They are more reliable and robust against cross-talk, interference and channel noises, and are capable of covering higher dynamic range than analogue systems. Wideband electronic analogue to digital conversion (ADC) systems have critical problems encountered in high-frequency broadband communication systems that the recent electronic ADCs (EADC) have experienced those such as uncertainty of sampling time. In this paper, an 80Gigasample/s all photonic sampling and quantization ADC and photonic digital to analogue conversion system with six effective number of bits (ENOB) is designed. By using this Photonic ADC (PADC), a digital radio over fibre link for wireless radio frequency (RF) signal transportation over 50 km single mode fibre has been designed whose performance is investigated in this paper

    Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection

    Get PDF
    A directly modulated laser diode with external light injection is used to generate microwave optical signals for a hybrid radio/fiber system. The external light injection greatly enhances the frequency response of the laser, and thus, significantly improves the overall performance of the hybrid system. Experimental results show a 14-dB improvement in system performance for the externally injected laser in a hybrid radio/fiber communication link used for distributing 155-Mb/s data signal

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    Integrated performance analysis of UWB wireless optical transmission in FTTH networks

    Get PDF
    The optical transmission of full standard ECMA_368 OFDM_UWB signals 400 Mbit/s per single user over 50 km SSMF, and the impact of optical transmission in the radio performance experimentally analyzed in this paper

    Demonstration of wireless backhauling over long-reach PONs

    Get PDF
    An IEEE 802.16e-2005 (WiMAX) compliant, longreach passive optical network is demonstrated, focusing on the development of next generation optical access with transparent wireless backhauling. In addition to the extended feeder reach, a wavelength band overlay is used to enhance network scalability by maintaining passive splitting in the field and with some design modification at the optical line terminal and remote base station. Radio-over-fiber is used to minimize network installation and maintenance costs through the use of simple remote radio heads complemented by frequency division multiplexing to address individual base stations. The implementation of overlapping radio cells/sectors is also proposed to provide joint signal processing at wireless user terminals. Experimental measurements confirmed EVMs below -30 and -23 dB downstream and upstream, respectively, over fiber link lengths of up to 84.6 km. In addition, adjacent channel leakage ratio measurements demonstrated that a figure of -45 dB with 40 MHz subcarrier spacing, as specified by the standard, can be readily achieved.Peer reviewe
    corecore