13,805 research outputs found

    Spectral Efficiency Scaling Laws in Dense Random Wireless Networks with Multiple Receive Antennas

    Full text link
    This paper considers large random wireless networks where transmit-and-receive node pairs communicate within a certain range while sharing a common spectrum. By modeling the spatial locations of nodes based on stochastic geometry, analytical expressions for the ergodic spectral efficiency of a typical node pair are derived as a function of the channel state information available at a receiver (CSIR) in terms of relevant system parameters: the density of communication links, the number of receive antennas, the path loss exponent, and the operating signal-to-noise ratio. One key finding is that when the receiver only exploits CSIR for the direct link, the sum of spectral efficiencies linearly improves as the density increases, when the number of receive antennas increases as a certain super-linear function of the density. When each receiver exploits CSIR for a set of dominant interfering links in addition to the direct link, the sum of spectral efficiencies linearly increases with both the density and the path loss exponent if the number of antennas is a linear function of the density. This observation demonstrates that having CSIR for dominant interfering links provides a multiplicative gain in the scaling law. It is also shown that this linear scaling holds for direct CSIR when incorporating the effect of the receive antenna correlation, provided that the rank of the spatial correlation matrix scales super-linearly with the density. Simulation results back scaling laws derived from stochastic geometry.Comment: Submitte

    How much does transmit correlation affect the sum-rate scaling of MIMO Gaussian broadcast channels?

    Get PDF
    This paper considers the effect of spatial correlation between transmit antennas on the sum-rate capacity of the MIMO Gaussian broadcast channel (i.e., downlink of a cellular system). Specifically, for a system with a large number of users n, we analyze the scaling laws of the sum-rate for the dirty paper coding and for different types of beamforming transmission schemes. When the channel is i.i.d., it has been shown that for large n, the sum rate is equal to M log log n + M log P/M + o(1) where M is the number of transmit antennas, P is the average signal to noise ratio, and o(1) refers to terms that go to zero as n → ∞. When the channel exhibits some spatial correlation with a covariance matrix R (non-singular with tr(R) = M), we prove that the sum rate of dirty paper coding is M log log n + M log P/M + log det(R) + o(1). We further show that the sum-rate of various beamforming schemes achieves M log log n + M log P/M + M log c + o(1) where c ≤ 1 depends on the type of beamforming. We can in fact compute c for random beamforming proposed in and more generally, for random beamforming with preceding in which beams are pre-multiplied by a fixed matrix. Simulation results are presented at the end of the paper

    On the Catalyzing Effect of Randomness on the Per-Flow Throughput in Wireless Networks

    Get PDF
    This paper investigates the throughput capacity of a flow crossing a multi-hop wireless network, whose geometry is characterized by general randomness laws including Uniform, Poisson, Heavy-Tailed distributions for both the nodes' densities and the number of hops. The key contribution is to demonstrate \textit{how} the \textit{per-flow throughput} depends on the distribution of 1) the number of nodes NjN_j inside hops' interference sets, 2) the number of hops KK, and 3) the degree of spatial correlations. The randomness in both NjN_j's and KK is advantageous, i.e., it can yield larger scalings (as large as Θ(n)\Theta(n)) than in non-random settings. An interesting consequence is that the per-flow capacity can exhibit the opposite behavior to the network capacity, which was shown to suffer from a logarithmic decrease in the presence of randomness. In turn, spatial correlations along the end-to-end path are detrimental by a logarithmic term

    An Upper Bound on Multi-hop Transmission Capacity with Dynamic Routing Selection

    Full text link
    This paper develops upper bounds on the end-to-end transmission capacity of multi-hop wireless networks. Potential source-destination paths are dynamically selected from a pool of randomly located relays, from which a closed-form lower bound on the outage probability is derived in terms of the expected number of potential paths. This is in turn used to provide an upper bound on the number of successful transmissions that can occur per unit area, which is known as the transmission capacity. The upper bound results from assuming independence among the potential paths, and can be viewed as the maximum diversity case. A useful aspect of the upper bound is its simple form for an arbitrary-sized network, which allows insights into how the number of hops and other network parameters affect spatial throughput in the non-asymptotic regime. The outage probability analysis is then extended to account for retransmissions with a maximum number of allowed attempts. In contrast to prevailing wisdom, we show that predetermined routing (such as nearest-neighbor) is suboptimal, since more hops are not useful once the network is interference-limited. Our results also make clear that randomness in the location of relay sets and dynamically varying channel states is helpful in obtaining higher aggregate throughput, and that dynamic route selection should be used to exploit path diversity.Comment: 14 pages, 5 figures, accepted to IEEE Transactions on Information Theory, 201

    On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System: Outage-Limited Scenario

    Full text link
    This paper investigates the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. Our results are obtained for different fading conditions and the effect of the power amplifiers efficiency on the performance of the MIMO-HARQ systems is analyzed. Moreover, we derive closed-form expressions for the asymptotic performance of the MIMO-HARQ systems when the number of antennas increases. Our analytical and numerical results show that different outage requirements can be satisfied with relatively few transmit/receive antennas.Comment: Under review in IEEE Transactions on Communication
    corecore