548 research outputs found

    Distributed Circuit Analysis and Design for Ultra-wideband Communication and sub-mm Wave Applications

    Get PDF
    This thesis explores research into new distributed circuit design techniques and topologies, developed to extend the bandwidth of amplifiers operating in the mm and sub-mm wave regimes, and in optical and visible light communication systems. Theoretical, mathematical modelling and simulation-based studies are presented, with detailed designs of new circuits based on distributed amplifier (DA) principles, and constructed using a double heterojunction bipolar transistor (DHBT) indium phosphide (InP) process with fT =fmax of 350/600 GHz. A single stage DA (SSDA) with bandwidth of 345 GHz and 8 dB gain, based on novel techniques developed in this work, shows 140% bandwidth improvement over the conventional DA design. Furthermore, the matrix-single stage DA (M-SSDA) is proposed for higher gain than both the conventional DA and matrix amplifier. A two-tier M-SSDA with 14 dB gain at 300 GHz bandwidth, and a three-tier M-SSDA with a gain of 20 dB at 324 GHz bandwidth, based on a cascode gain cell and optimized for bandwidth and gain flatness, are presented based on full foundry simulation tests. Analytical and simulation-based studies of the noise performance peculiarities of the SSDA and its multiplicative derivatives are also presented. The newly proposed circuits are fabricated as monolithic microwave integrated circuits (MMICs), with measurements showing 7.1 dB gain and 200 GHz bandwidth for the SSDA and 12 dB gain at 170 GHz bandwidth for the three-tier M-SSDA. Details of layout, fabrication and testing; and discussion of performance limiting factors and layout optimization considerations are presented. Drawing on the concept of artificial transmission line synthesis in distributed amplification, a new technique to achieve up to three-fold improvement in the modulation bandwidth of light emitting diodes (LEDs) for visible light communication (VLC) is introduced. The thesis also describes the design and application of analogue pre-emphasis to improve signal-to-noise ratio in bandwidth limited optical transceivers

    Reconfigurable RF Front End Components for Multi-Radio Platform Applications

    Get PDF
    The multi-service requirements of the 3G and 4G communication systems, and their backward compatibility requirements, create challenges for the antenna and RF front-end designs with multi-band and wide-band techniques. These challenges include: multiple filters, which are lossy, bulky, and expensive, are needed in the system; device board size limitation and the associated isolation problems caused by the limited space and crowd circuits; and the insertion loss issues created by the single-pole-multi-through antenna switch. As will be shown, reconfigurable antennas can perform portions of the filter functions, which can help solve the multiple filters problem. Additionally, reconfigurable RF circuits can decrease the circuit size and output ports, which can help solve board size limitation, and isolation and antenna switch insertion loss issues. To validate the idea that reconfigurable antennas and reconfigurable RF circuits are a viable option for multi-service communication system, a reconfigurable patch antenna, a reconfigurable monopole antenna, and a reconfigurable power amplifier (PA) have been developed. All designs adapt state-of-the-art techniques. For the reconfigurable antenna designs, an experiment demonstrating its advantages, such as jamming signal resistance, has been performed. Reconfigurable antennas provide a better out-ofoperating- band noise performance than the multi-band antennas design, decreasing the need for filters in the system. A full investigation of reconfigurable antennas, including the single service reconfigurable antenna, the mixed signal service reconfigurable antenna, and the multi-band reconfigurable antenna, has been completed. The design challenges, which include switches investigation, switches integration, and service grouping techniques, have been discussed. In the reconfigurable PA portion, a reconfigurable PA structure has first been demonstrated, and includes a reconfigurable output matching network (MN) and a reconfigurable die design. To validate the proposed reconfigurable PA structure, a reconfigurable PA for a 3G cell phone system has been designed with a multi-chip module technique. The reconfigurable PA structure can significantly decrease the real-estate, cost, and complexity of the PA design. Further, by decreasing the number of output ports, the number of poles for the antenna switch will be decreased as well, leading to an insertion loss decrease

    Microwave Characteristics of an Independently Biased 3-stack InGaP/GaAs HBT Configuration

    Get PDF
    This paper investigates various important microwave characteristics of an independently biased 3-stack InGaP/GaAs heterojunction bipolar transistor (HBT) monolithic microwave integrated circuit (MMIC) chip at both small-signal and large-signal operation. By taking the advantage of the independently biased functionality, bias condition for individual transistor can be adjusted flexibly, resulting in the ability of independent control for both small-signal and large-signal performances. It was found that at small-signal operation stability and isolation characteristics of the proposed configuration can be significantly improved by controlling bias condition of the second-stage and the third-stage transistors while at large-signal operation its linearity and power gain can be improved through controlling the bias condition of the first-stage and the third-stage transistors. To demonstrate the benefits of using such an independently biased configuration, a measured optimum large-signal performance at an operation frequency of 1.6 GHz under an optimum bias condition for the high gain, low distortion were obtained as: PAE = 23.5 %, Pout = 12 dBm; Gain = 32.6 dB at IMD3 = -35 dBc. Moreover, to demonstrate the superior advantage of the proposed configuration, its small-signal and large-signal performance were also compared to that of a single stage common-emitter, a conventional 2-stack, an independently biased 2-stack and a conventional 3-stack configuration. The compared results showed that the independently biased 3-stack is the best candidate among the configurations for various wireless communications applications

    High-Gain Transimpedance Amplifier With DC Photodiode Current Rejection

    Get PDF
    This master\u27s thesis deals with the design of a differential high-gain transimpedance amplifier in TSMC\u27s 0.18 um mixed signal process that utilizes a DC photodiode current cancellation loop and a switching automatic gain control (AGC) with a bilinear gain curve. The amplifier is designed to satisfy the demands of Optical Coherence Tomography applications where the receiver is expected to measure the envelope power of an amplitude modulated sinusoidal optical signal that incorporates a large DC component. Methods of increasing dynamic range and gain linearity through the use of DC photodiode current cancellation and bilinear gain are explored. Effects of changing DC photodiode current on the overall system response is also demonstrated

    WOCSDICE : workshop on compound semiconductor devices and integrated circuits, 21st, May 25-28, 1997, Scheveningen, The Netherlands

    Get PDF

    Large-signal charge control modeling of photoreceivers for applications up to 40 Gb/s

    Get PDF
    A charge control model was used to simulate the sensitivity and responsivity in a range of photodetector configurations including heterojunction bipolar phototransistors (HPTs), PIN-HBT, and APDs. Our simulations enabled for the first time a direct comparison of the performance between these photodetectors to be made. Simulations have been performed at bit rates from 2 to 40 Gb/s using various combinations of device design parameters (layer thickness, source resistance, and dc base voltage). For a BER = 10(-9) at 40 Gb/s the best sensitivity of approximately -20 dBm was achieved using an optimized APD-HBT configuration, followed by sensitivities of approximately -14 dBm using optimized PIN-HBTs and HPTs. These results were found to agree well with published experimental data

    WOCSDICE : workshop on compound semiconductor devices and integrated circuits, 21st, May 25-28, 1997, Scheveningen, The Netherlands

    Get PDF
    • …
    corecore