429 research outputs found

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    The evolution of modular artificial neural networks.

    Get PDF
    This thesis describes a novel approach to the evolution of Modular Artificial Neural Networks. Standard Evolutionary Algorithms, used in this application include: Genetic Algorithms, Evolutionary Strategies, Evolutionary Programming and Genetic Programming; however, these often fail in the evolution of complex systems, particularly when such systems involve multi-domain sensory information which interacts in complex ways with system outputs. The aim in this work is to produce an evolutionary method that allows the structure of the network to evolve from simple to complex as it interacts with a dynamic environment. This new algorithm is therefore based on Incremental Evolution. A simulated model of a legged robot was used as a test-bed for the approach. The algorithm starts with a simple robotic body plan. This then grows incrementally in complexity along with its controlling neural network and the environment it reacts with. The network grows by adding modules to its structure - so the technique may also be termed a Growth Algorithm. Experiments are presented showing the successful evolution of multi-legged gaits and a simple vision system. These are then integrated together to form a complete robotic system. The possibility of the evolution of complex systems is one advantage of the algorithm and it is argued that it represents a possible path towards more advanced artificial intelligence. Applications in Electronics, Computer Science, Mechanical Engineering and Aerospace are also discussed

    Engineering visualization utilizing advanced animation

    Get PDF
    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed

    Using evolutionary artificial neural networks to design hierarchical animat nervous systems.

    Get PDF
    The research presented in this thesis examines the area of control systems for robots or animats (animal-like robots). Existing systems have problems in that they require a great deal of manual design or are limited to performing jobs of a single type. For these reasons, a better solution is desired. The system studied here is an Artificial Nervous System (ANS) which is biologically inspired; it is arranged as a hierarchy of layers containing modules operating in parallel. The ANS model has been developed to be flexible, scalable, extensible and modular. The ANS can be implemented using any suitable technology, for many different environments. The implementation focused on the two lowest layers (the reflex and action layers) of the ANS, which are concerned with control and rhythmic movement. Both layers were realised as Artificial Neural Networks (ANN) which were created using Evolutionary Algorithms (EAs). The task of the reflex layer was to control the position of an actuator (such as linear actuators or D.C. motors). The action layer performed the task of Central Pattern Generators (CPG), which produce rhythmic patterns of activity. In particular, different biped and quadruped gait patterns were created. An original neural model was specifically developed for assisting in the creation of these time-based patterns. It is shown in the thesis that Artificial Reflexes and CPGs can be configured successfully using this technique. The Artificial Reflexes were better at generalising across different actuators, without changes, than traditional controllers. Gaits such as pace, trot, gallop and pronk were successfully created using the CPGs. Experiments were conducted to determine whether modularity in the networks had an impact. It has been demonstrated that the degree of modularization in the network influences its evolvability, with more modular networks evolving more efficiently

    A brief history of learning classifier systems: from CS-1 to XCS and its variants

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. The direction set by Wilson’s XCS is that modern Learning Classifier Systems can be characterized by their use of rule accuracy as the utility metric for the search algorithm(s) discovering useful rules. Such searching typically takes place within the restricted space of co-active rules for efficiency. This paper gives an overview of the evolution of Learning Classifier Systems up to XCS, and then of some of the subsequent developments of Wilson’s algorithm to different types of learning

    An action selection architecture for autonomous virtual humans in persistent worlds

    Get PDF
    Nowadays, virtual humans such as non-player characters in computer games need to have a strong autonomy in order to live their own life in persistent virtual worlds. When designing autonomous virtual humans, the action selection problem needs to be considered, as it is responsible for decision making at each moment in time. Indeed action selection architectures for autonomous virtual humans need to be reactive, proactive, motivational, and emotional to obtain a high degree of autonomy and individuality. The thesis can be divided into three parts. In the first part, we define each word of our title to precise their sense and raise the problematic of this work. We describe also inspirations from several domains that we used to design our model because this thesis is highly multi-disciplinary. Indeed, decision-making is essential for every autonomous entity and is studied in ethology, robotics, computer graphics, computer sciences, and cognitive sciences. However, we have chosen specific techniques to implement our model: hierarchical classifier systems and a free flow hierarchy. The second part of this thesis describes in detail our model of action selection for autonomous virtual humans. We use overlapping hierarchical classifier systems, working in parallel, to generate coherent behavioral plans. They are associated with the functionalities of a free flow hierarchy for the spreading of activation to give reactivity and flexibility to the hierarchical system. Moreover several functionalities are added to enhance and facilitate the choice of the most appropriate action at every time according to the internal and external influences. Finally, in the third part of this thesis, a complex simulated environment is created for testing the model and its functionalities with many conflicting motivations. Results demonstrate that the model is sufficiently efficient, robust and flexible for designing motivational autonomous virtual humans in persistent worlds. Moreover, we have just started to investigate on the emotional level which has to be improved in the future to have more subjective and adaptive behaviors and also manage social interactions with other virtual humans or users. Applied to video games, non player characters are more interesting and believable because they live their own life when people don't interact with them

    The use of information theory in evolutionary biology

    Full text link
    Information is a key concept in evolutionary biology. Information is stored in biological organism's genomes, and used to generate the organism as well as to maintain and control it. Information is also "that which evolves". When a population adapts to a local environment, information about this environment is fixed in a representative genome. However, when an environment changes, information can be lost. At the same time, information is processed by animal brains to survive in complex environments, and the capacity for information processing also evolves. Here I review applications of information theory to the evolution of proteins as well as to the evolution of information processing in simulated agents that adapt to perform a complex task.Comment: 25 pages, 7 figures. To appear in "The Year in Evolutionary Biology", of the Annals of the NY Academy of Science

    Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

    Get PDF
    Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article's contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area
    • …
    corecore