27,349 research outputs found

    Multichannel Cross-Layer Routing for Sensor Networks

    Get PDF
    Wireless Sensor Networks are ad-hoc networks that consist of sensor nodes that typically use low-power radios to connect to the Internet. The channels used by the low-power radio often suffer from interference from the other devices sharing the same frequency. By using multichannel communication in wireless networks, the effects of interference can be mitigated to enable the network to operate reliably. This thesis investigates an energy efficient multichannel protocol in Wireless Sensor Networks. It presents a new decentralised multichannel tree-building protocol with a centralised controller for ad-hoc sensor networks. The proposed protocol alleviates the effect of interference, which results in improved network efficiency, stability, and link reliability. The protocol detects the channels that suffer interference in real-time and switches the sensor nodes from those channels. It takes into account all available channels and aims to use the spectrum efficiently by transmitting on several channels. In addition to the use of multiple channels, the protocol reconstructs the topology based on the sensor nodes’ residual energy, which can prolong the network lifetime. The sensor nodes’ energy consumption is reduced because of the multichannel protocol. By using the lifetime energy spanning tree algorithm proposed in this thesis, energy consumption can be further improved by balancing the energy load in the network. This solution enables sensor nodes with less residual energy to remain functional in the network. The benefits of the proposed protocol are described in an extensive performance evaluation of different scenarios in this thesis

    Secure Communications in Millimeter Wave Ad Hoc Networks

    Get PDF
    Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.Comment: Accepted by IEEE Transactions on Wireless Communication

    A Review of Interference Reduction in Wireless Networks Using Graph Coloring Methods

    Full text link
    The interference imposes a significant negative impact on the performance of wireless networks. With the continuous deployment of larger and more sophisticated wireless networks, reducing interference in such networks is quickly being focused upon as a problem in today's world. In this paper we analyze the interference reduction problem from a graph theoretical viewpoint. A graph coloring methods are exploited to model the interference reduction problem. However, additional constraints to graph coloring scenarios that account for various networking conditions result in additional complexity to standard graph coloring. This paper reviews a variety of algorithmic solutions for specific network topologies.Comment: 10 pages, 5 figure

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme
    • …
    corecore