997 research outputs found

    Multiplexity and multireciprocity in directed multiplexes

    Get PDF
    Real-world multi-layer networks feature nontrivial dependencies among links of different layers. Here we argue that, if links are directed, dependencies are twofold. Besides the ordinary tendency of links of different layers to align as the result of `multiplexity', there is also a tendency to anti-align as the result of what we call `multireciprocity', i.e. the fact that links in one layer can be reciprocated by \emph{opposite} links in a different layer. Multireciprocity generalizes the scalar definition of single-layer reciprocity to that of a square matrix involving all pairs of layers. We introduce multiplexity and multireciprocity matrices for both binary and weighted multiplexes and validate their statistical significance against maximum-entropy null models that filter out the effects of node heterogeneity. We then perform a detailed empirical analysis of the World Trade Multiplex (WTM), representing the import-export relationships between world countries in different commodities. We show that the WTM exhibits strong multiplexity and multireciprocity, an effect which is however largely encoded into the degree or strength sequences of individual layers. The residual effects are still significant and allow to classify pairs of commodities according to their tendency to be traded together in the same direction and/or in opposite ones. We also find that the multireciprocity of the WTM is significantly lower than the usual reciprocity measured on the aggregate network. Moreover, layers with low (high) internal reciprocity are embedded within sets of layers with comparably low (high) mutual multireciprocity. This suggests that, in the WTM, reciprocity is inherent to groups of related commodities rather than to individual commodities. We discuss the implications for international trade research focusing on product taxonomies, the product space, and fitness/complexity metrics.Comment: 20 pages, 8 figure

    Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems

    Full text link
    Unveiling the community structure of networks is a powerful methodology to comprehend interconnected systems across the social and natural sciences. To identify different types of functional modules in interaction data aggregated in a single network layer, researchers have developed many powerful methods. For example, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow in the systems they represent. However, many networked systems consist of agents or components that exhibit multiple layers of interactions. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here we propose a method based on compression of network flows that can identify modular flows in non-aggregated multilayer networks. Our numerical experiments on synthetic networks show that the method can accurately identify modules that cannot be identified in aggregated networks or by analyzing the layers separately. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks: scientists affiliated to the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method reveals smaller modules with more overlap that better capture the actual organization

    Loss of brain inter-frequency hubs in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) causes alterations of brain network structure and function. The latter consists of connectivity changes between oscillatory processes at different frequency channels. We proposed a multi-layer network approach to analyze multiple-frequency brain networks inferred from magnetoencephalographic recordings during resting-states in AD subjects and age-matched controls. Main results showed that brain networks tend to facilitate information propagation across different frequencies, as measured by the multi-participation coefficient (MPC). However, regional connectivity in AD subjects was abnormally distributed across frequency bands as compared to controls, causing significant decreases of MPC. This effect was mainly localized in association areas and in the cingulate cortex, which acted, in the healthy group, as a true inter-frequency hub. MPC values significantly correlated with memory impairment of AD subjects, as measured by the total recall score. Most predictive regions belonged to components of the default-mode network that are typically affected by atrophy, metabolism disruption and amyloid-beta deposition. We evaluated the diagnostic power of the MPC and we showed that it led to increased classification accuracy (78.39%) and sensitivity (91.11%). These findings shed new light on the brain functional alterations underlying AD and provide analytical tools for identifying multi-frequency neural mechanisms of brain diseases.Comment: 27 pages, 6 figures, 3 tables, 3 supplementary figure

    Reconstruction of multiplex networks with correlated layers

    Get PDF
    The characterization of various properties of real-world systems requires the knowledge of the underlying network of connections among the system's components. Unfortunately, in many situations the complete topology of this network is empirically inaccessible, and one has to resort to probabilistic techniques to infer it from limited information. While network reconstruction methods have reached some degree of maturity in the case of single-layer networks (where nodes can be connected only by one type of links), the problem is practically unexplored in the case of multiplex networks, where several interdependent layers, each with a different type of links, coexist. Even the most advanced network reconstruction techniques, if applied to each layer separately, fail in replicating the observed inter-layer dependencies making up the whole coupled multiplex. Here we develop a methodology to reconstruct a class of correlated multiplexes which includes the World Trade Multiplex as a specific example we study in detail. Our method starts from any reconstruction model that successfully reproduces some desired marginal properties, including node strengths and/or node degrees, of each layer separately. It then introduces the minimal dependency structure required to replicate an additional set of higher-order properties that quantify the portion of each node's degree and each node's strength that is shared and/or reciprocated across pairs of layers. These properties are found to provide empirically robust measures of inter-layer coupling. Our method allows joint multi-layer connection probabilities to be reliably reconstructed from marginal ones, effectively bridging the gap between single-layer properties and truly multiplex information

    Frequency-based brain networks: From a multiplex framework to a full multilayer description

    Get PDF
    We explore how to study dynamical interactions between brain regions using functional multilayer networks whose layers represent the different frequency bands at which a brain operates. Specifically, we investigate the consequences of considering the brain as a multilayer network in which all brain regions can interact with each other at different frequency bands, instead of as a multiplex network, in which interactions between different frequency bands are only allowed within each brain region and not between them. We study the second smallest eigenvalue of the combinatorial supra-Laplacian matrix of the multilayer network in detail, and we thereby show that the heterogeneity of interlayer edges and, especially, the fraction of missing edges crucially modify the spectral properties of the multilayer network. We illustrate our results with both synthetic network models and real data sets obtained from resting state magnetoencephalography. Our work demonstrates an important issue in the construction of frequency-based multilayer brain networks.Comment: 13 pages, 8 figure

    Structural transition in interdependent networks with regular interconnections

    Get PDF
    Networks are often made up of several layers that exhibit diverse degrees of interdependencies. A multilayer interdependent network consists of a set of graphs GG that are interconnected through a weighted interconnection matrix B B , where the weight of each inter-graph link is a non-negative real number p p . Various dynamical processes, such as synchronization, cascading failures in power grids, and diffusion processes, are described by the Laplacian matrix Q Q characterizing the whole system. For the case in which the multilayer graph is a multiplex, where the number of nodes in each layer is the same and the interconnection matrix B=pI B=pI , being I I the identity matrix, it has been shown that there exists a structural transition at some critical coupling, p p^* . This transition is such that dynamical processes are separated into two regimes: if p>p p > p^* , the network acts as a whole; whereas when p<p p<p^* , the network operates as if the graphs encoding the layers were isolated. In this paper, we extend and generalize the structural transition threshold p p^* to a regular interconnection matrix B B (constant row and column sum). Specifically, we provide upper and lower bounds for the transition threshold p p^* in interdependent networks with a regular interconnection matrix B B and derive the exact transition threshold for special scenarios using the formalism of quotient graphs. Additionally, we discuss the physical meaning of the transition threshold p p^* in terms of the minimum cut and show, through a counter-example, that the structural transition does not always exist. Our results are one step forward on the characterization of more realistic multilayer networks and might be relevant for systems that deviate from the topological constrains imposed by multiplex networks.Comment: 13 pages, APS format. Submitted for publicatio

    Diffusion capacity of single and interconnected networks

    Get PDF
    Understanding diffusive processes in networks is a significant challenge in complexity science. Networks possess a diffusive potential that depends on their topological configuration, but diffusion also relies on the process and initial conditions. This article presents Diffusion Capacity, a concept that measures a node’s potential to diffuse information based on a distance distribution that considers both geodesic and weighted shortest paths and dynamical features of the diffusion process. Diffusion Capacity thoroughly describes the role of individual nodes during a diffusion process and can identify structural modifications that may improve diffusion mechanisms. The article defines Diffusion Capacity for interconnected networks and introduces Relative Gain, which compares the performance of a node in a single structure versus an interconnected one. The method applies to a global climate network constructed from surface air temperature data, revealing a significant change in diffusion capacity around the year 2000, suggesting a loss of the planet’s diffusion capacity that could contribute to the emergence of more frequent climatic events.Research partially supported by Brazilian agencies FAPEMIG, CAPES, and CNPq. P.M.P. acknowledges support from the “Paul and Heidi Brown Preeminent Professorship in ISE, University of Florida”, and RSF 14-41- 00039, Humboldt Research Award (Germany) and LATNA, Higher School of Economics, RF. C.M. acknowledges partial support from Spanish MINECO (PID2021-123994NB-C21) and ICREA ACADEMIA. A.D.- G. knowledges support from the Spanish grants PGC2018-094754-BC22 and PID2021-128005NB-C22, funded by MCIN/AEI/ 10.13039/ 501100011033 and “ERDF A way of making Europe”; and from Generalitat de Catalunya (2021SGR00856). M.G.R acknowledges partial support from FUNDEP.Peer ReviewedPostprint (published version

    Multiplex Networks Structure and Dynamics

    Get PDF
    Los estudios tradicionales en teoría de redes complejas, en general, representan la interacción entre dos elementos del sistema a través de un solo enlace. Esta representación resulta ser una simplificación excesiva en la mayoría de los casos de interés práctico y puede llevar a resultados y conclusiones engañosas. Esto se debe a que la mayoría de los sistemas reales poseen una estructura multicapa, ya que en una gran cantidad de casos de estudio reales existen muchos tipos distintos de interacción entre los constituyentes del sistema. Por ejemplo, un sistema de transporte está constituido por múltiples modos de viajes; un sistema biológico incluye múltiples canales de señalización que operan en paralelo; finalmente, una red social está constituida por múltiples tipos de relaciones distintas (de trabajo, de amistad, de parentesco, etc.) que operan vía distintos modos de comunicación en paralelo (en línea, o desconectados). Para representar de manera apropiada estos sistemas, años atrás se introdujo la noción de redes multiplex en campos tan distintos como la ingeniería y la sociología, al mismo tiempo que los instrumentos analíticos desarrollados para describirlas y analizarlas fueron muy escasos. Esta escasez se debía fundamentalmente a un aspecto: aunque muchas características y métricas de las redes tradicionales (de una sola capa) están bien definidas en la teoría tradicional de redes complejas, resulta muy desafiante generalizarlas al caso de redes multicapa, incluso para aquellas que son más simples. El interés por nuevos desarrollos teóricos para es estudio en profundidad de las redes multiplex, por lo tanto, ha ido creciendo sólo en los últimos años, gracias sobre todo a la gran cantidad de datos disponibles sobre sistemas reales que necesitan de una representación multicapa si se quieren describir y entender en profundidad. En esta Tesis desarrollamos un lenguaje matemático formal para representar la redes multiplex en términos de la teoría algébrica de grafos. En particular, introducimos la noción de matriz de supra-adyacencia como generalización de la matriz de adyacencia definida en el caso de una red de una sola capa. Así mismo definimos el supra-Laplaciano de una red multiplex como generalización del Laplaciano. También, se propone una representación agregada de una red multiplex a través de la noción de grafo cociente. Esto permite asociar a la red multiplex original, un grafo de una sola capa en el cual se agregan los distintos tipos de interacciones presentes. Por un lado, a través de este procedimiento se introduce una manera bien definida de agregar capas, y por otro, también permite definir otra red, formada por las capas, que contiene toda la información relativa a la interacción entre las mismas. La importancia de las nuevas definiciones radica en que, gracias a ellas, podemos utilizar algunos teoremas y resultados de teoría espectral de grafos y sus respectivos cocientes para estudiar propiedades espectrales de redes múltiplex y su representación agregada. Finalmente, también introducimos la noción de matriz de caminos asociados a una red multiplex. En una red de una sola capa un camino es una sucesión de nodos adyacentes. En una red multiplex pueden existir distintas nociones de caminos dependiendo de la manera en que se quieran tratar los enlaces entre capas. Dada una noción de camino, a esta resultará asociada una matriz de caminos. Una vez desarrollado el lenguaje formal apto a describir una red multicapa, afrontamos el problema de la generalización de algunas medidas estructurales. En particular tratamos el caso del coeficiente de agrupamiento (tanto local como global) y la centralidad de un subgrafo. Aunque ya existían en la literatura algunas propuestas de generalización del coeficiente de agrupamiento, la mayoría de estas resultaban ser definiciones ad hoc con respecto a casos de estudios particulares, o directamente mal definidas. Las distintas medidas que proponemos en estas tesis son muy generales, bien normalizadas y se reducen a la tradicional medida de coeficiente de agrupamiento para redes de una sola capa cuando el número de capas es uno. En cuanto a la centralidad de subgrafos, utilizamos este caso particular para demonstrar la utilidad de construir sobre nociones básicas (como es la de camino) a la hora de generalizar medidas estructurales.\\ Por otro lado, mucha información respecto a la organización estructural de una red (ya sea multicapa o de una sola capa) está codificada en el espectro de la matriz de adyacencia a ella asociada así como en el del Laplaciano. Por esta razón, estudiamos las propiedades espectrales tanto de la matriz de supra-adyacencia como del supra-Laplaciano. En particular, con respecto a la matriz de supra-adyacencia, estudiamos su autovalor máximo. Éste resulta de interés ya que está en la base de medidas topológicas como la entropía de ensemble de los caminos, así como del estudio de las propiedades críticas de algunos procesos dinámicos. Por ejemplo, el valor crítico del parámetro de difusión en un modelo de propagación epidemias depende del autovalor máximo de la matriz de adyacencia. Para el estudio de este autovalor utilizamos técnicas perturbativas. Podemos definir una capa que llamamos dominante, que será aquella que tenga el mayor autovalor máximo de la matriz de adyacencia asociada a la misma. El autovalor máximo de la matriz de supra-adyacencia resulta ser igual al autovalor máximo de la capa dominante al primer orden perturbativo. Además, la corrección de segundo orden es dependiente de las correlaciones entre nodos que representan el mismo objecto en distintas capas distintas. Adicionalmente, aprovechando los resultados conocidos que relacionan el espectro de un grafo cociente con aquel de su grafo padre, estudiamos el espectro de una red multicapa a partir de su representación agregada. En particular, demostramos que los autovalores del Laplaciano de la red de capas son un subconjunto de los autovalores del supra-Laplaciano de la red multicapa, cuando todos los nodos participan en todos las capas. Este resultado nos permite estudiar la conectividad algébrica de la red multicapa, o sea el primer autovalor no-nulo y obtener algunos resultados tanto exactos como perturbativos sobre este. En concreto, las transiciones estructurales en redes multicapa son de gran interés. En esta tesis presentamos una teoría de estas transiciones que se deriva por completo de la noción de grafo cociente. Finalmente, presentamos un modelo de contagio social y estudiamos la existencia de estados meta-estables macroscópicos en los cuales una fracción finita de nodos resultan contagiados. La existencia de una capa dominante hace que sea esta la que determine el valor crítico del contagio, definido como el valor de este parámetro a partir del cual existe un estado macroscopico de la infección (también para las capas no-dominantes). Este resultado se derivada utilizando el método perturbativo para calcular el autovalor máximo de la matriz de supra-adyacencia. Simulaciones numéricas del modelo confirman los resultados analíticos. Para terminar, en el presente trabajo exponemos nuestras conclusiones a manera de resumen por un lado, y por otra, discutiendo cuáles son los aspectos que a nuestro criterio, podrían ser de interés para futuras investigaciones en este tema

    Towards real-world complexity: an introduction to multiplex networks

    Full text link
    Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.Comment: 20 pages, 10 figure
    corecore