19 research outputs found

    Development of Deep Learning Hybrid Models for Hydrological Predictions

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo

    Estudio comparativo completo de varios métodos basados en datos para la gestión de los recursos hídricos en ambientes mediterráneos a través de diferentes escalas temporales

    Get PDF
    Since the beginning of time, there has been innovation in the knowledge and technology of water and the hydraulic systems, to achieve an efficient and upgrade management of them. In this project, as an opening hypothesis, we will apply computational techniques and Artificial Intelligence concepts. Given that the primary asset of these studies is data, we have preferred to use the term ”Data-Driven”, as the term Artificial Intelligence can cause confusion in non-experts. This is an expanding field in all aspects of science and life, where the computing and processing powers are increasing periodic, so does the generation of information. There we have 5G technology, or the Internet of things, where the exponential build up in the volume of data utilised, pushes us to set up frameworks for the treatment and analysis of the information.Data-Driven techniques offers enormous potential to transform our perception to understand,monitor and predict the states of hydro-meteorological variables. Its application provides benefits, however, performing these exercises requires practice and explicit knowledge. Therefore, a deeper understanding of the capabilities and limitations of novel computational techniques within our field of knowledge is needed. Hence, it is essential to carry out ”hydro-informatics” experiences under this assumption. For the development of these models, we identify which points are the most relevant and need to be taken into account in regional conditions or frameworks. In consequence, we will work with the time series collected in the different monitoring networks, selecting the hydrological points of interest, in order to further develop hydrological frameworks that are useful for water management and optimisation. Here, we are interested in seeing the practical applicability to hydro-meteorology under Mediterranean conditions, where data are sometimes scarce, by selecting two hydrographic basins in south-east Andalusia: the Guadalhorce river (Málaga) and the Guadalfeo river (Granada). In chapter 1, an introduction to the doctoral thesis is made. Likewise, we establish the general and the specific objectives, and the motivation of the thesis. Afterwards, we describe the three fundamental exercises to be carried out in the research work: Regression, Classification and Optimisation. Ultimately, we carry out a brief review of previous works under Mediterranean climatic conditions and similar assumptions. Chapter 2 presents the study areas, analysing the spatial and temporal characteristics of two Andalusian Mediterranean basins in south-east Spain: Guadalhorce (GH) and Guadalfeo (GF). These are hydrographic basins with highly variable/heterogeneous spacetime patterns. The first hydrological system, GH, contains an area of socio-economic importance, such is the city of M´alaga. The second, GF, to the north has the Sierra Nevada National Park, crowned by the Mulhac´en peak and flowing in a few kilometres into the area of Motril. In this particular water system, we find large gradients of the geophysical agents. Both systems have regulation structures of great interest for the development and study of their optimisation. We also review the monitoring networks available in these basins, and which environmental agents and/or processes should be taken into account to meet the objectives of this work. We carry out a bibliographic review of the most relevant historical floods, listing the factors associated with these extreme events. In the data analysis stage of this chapter, we focus on the spatialtemporal evolution of the risk of flooding in the two mouths of the Guadalhorce and Guadalfeo Rivers into the Albor´an Sea. We quantify that had stepped up in recent years, noting that dangerous practices have increased the risk of flooding because of the intrusion of land uses with high-costs. This chapter also analyses collected data within the monitoring networks, to understand the occurrence of floods in the river GH related to upstream discharges. We found that this basin has limitations in regulation and cannot mitigate costs downstream. The results got, were part of the work presented in Egüen et al. (2015). These analyses allow us to identify in which parts of the flood management of this hydrological system need a more precise optimisation. Finally, a summary of another important hydrological risk is carried out, such as droughts, and how these water deficits can be represented by standardised indices, both in rainfall and the flow rates. The various approaches and methodologies for hydro-meteorological time series modelling are discussed in the chapter 3. The contrasting concepts are exposed antagonistically, to focus on the different design choices that we need to make: black box vs. grey box vs. white box, parametric vs. non-parametric, static vs. dynamic, linear vs. non-linear, frequency vs. Bayesian, single vs. multiple, among others..., detailing the advantages and disadvantages of each approach. We presented some ideas that emerged in this part of the research in Herrero et al. (2014). The partition, management and data transformation steps for the correct application of these experimental methods are also discussed. This is of great importance, since part of the hard work in the application of these methods comes from the transformation of the data. So that, the algorithms and transfer functions work correctly. Finally, we focus on how to test and validate the deterministic and probabilistic behaviours through evaluative coefficients to avoid coefficients that mask the results, and therefore focus on the behaviours of our interest, in our case precision and predictability. We have also taken parsimony into account in models based on neural networks, since they can easily fall into over-parameterisation. In chapter 4, we present the experimental work, where seven short-term, six daily and one hourly rainfall-runoff regressions are performed. The case studies correspond to various points of interest within the study areas with important implications for hydrological management. On an hourly scale, we analyse the efficiency and predictive capacities of the MLR and BNN at ten time horizons for the level of the Guadalhorce River in Cártama. We found that, for closer predictive horizons, a simpler approach such as linear (MLR) can outperform other with a priori higher capabilities, such as non-linear (BNN). This finding could simplify greatly its development and application. At a daily scale, we establish a comparative framework between the two previous models and a complete Bayesian method such as the Gaussian Processes. This DD computational technique, allows us to apply different transfer functions under a single model. This is an advantage over the other two DD models, since the results show that they work well in one domain, but do not work well in the other. During the construction of the models, we do the selection of the input variables in a progressive way, through a trial-and-error method, where the significant improvements with respect to the last predictor structure are taken into account preserving the principle of parsimony. Here, we have used different types of data: real data collected in the monitoring networks, and data generated in parallel from physically based hydrological modelling (WiMMed). The results are robust, where the major limitation is the high computational cost by the recurrent and iterative method used. Some results of this chapter, were presented in Gulliver et al. (2014). In chapter 5 three medium-term time scale prediction experiments are performed. We base the first modelling experiment on a quarterly scale, where a hydrological time scheme determines the cumulative flow for specific time horizons. We start the scheme according to the relevant dates where hydrological planning takes place. It is validated that the forecasts are more prosperous after have been consumed the first six months of the hydrological year. Instead of the three months in which we carry out the evaluations. The observed input variables quantified in the water system are: cumulative stream flow, cumulative rainfall, cumulative snowfall values and atmospheric oscillations (AO). At the level of modelling with DD, this experience has shown the importance of combining mixed regression classification models instead of only regression models within static frameworks. In this manner, we reduce and narrow the space of possible solutions and, therefore, we optimised the predictive behaviour of the DD model. During the development of this exercise, we have also carried out a classification practice comparing three DD classifiers: Probabilistic Neural Network (PNN), K-Nearest Neighbour (KNN) and Support Vector Machine (SVM). We see that the SVM behaves better than the others with our data. However, more research is still needed on classifiers in hydro-meteorological frameworks like ours, because of their variability. We showed this part of the doctoral thesis in Gulliver et al. (2016). In the second section of this chapter (Sec. 5.3), we carry out a rain forecast exercise on a monthly scale. To do so, we use BNN following the same construction method of the SVI model exposed in the previous chapter (Sec. Ref. Chapter 4), thus validating it in another time scale. However, the results in predictive terms are poor for this hydro-meteorological variable. This confirms the difficulty of predicting this variable from historical data and without the incorporation of dynamic tools. Thus, the need for complex hydrodynamic modelling for the prediction of this important variable is confirmed. On the other hand, this case serves to empirically infer the causality of the most relevant atmospheric oscillations in the points of study. From multiple simulations with the model-based approach it has been possible to establish which indices have a greater influence. In the last section of this chapter (Section 5.4), an exercise was carried out to predict the deviation or anomaly of rainfall and runoff indices for four time series representative of different locations within the Guadalfeo BR. In this case, we verified the suitability of seven statistical distributions to characterize the anomalies/deviations under Mediterranean conditions. Under this hypothesis, the indices that passed the Shapiro-Wilk normality test were modelled to analyse the capabilities of BNN to predict these indices at various time horizons. Here, predictions of negative phases (droughts or deficit periods) have been poor, and the behaviour of the models for positive phases (wet periods) has been more successful. Regarding the causal inference of IC and its possible influence on the study area, we found out how NAO and WEMO help forecasts for shorter time horizons, while MOI helps for longer cumulative time horizons/times. We have analysed the relevance of these atmospheric variables in each case where sometimes their introduction was convenient and sometimes not, following the rules of construction and detailing them in each case study. Throughout the work, the usefulness of mixed modelling approaches has been verified, using models based on observed data from the different monitoring networks with physical modelling for the reproduction of essential hydrological processes. With the proposed methodology, a positive influence of atmospheric oscillations has been observed for medium-term prediction within the study regions, finding no evidence for short-term predictions (daily scale). The final conclusions and the most important points for future work are presented in the chapter 6. Applications of this type of methods are currently necessary. They help us to establish relationships based on measured hydro-meteorological data and thus ”based on real data”, without hypothesizing any assumptions. These data-based experiences are very useful for limiting future uncertainty and optimizing water resources. The establishment of temporal relationships between different environmental agents allows us, through supervised methods, to establish causal relationships. From here a physical inference exercise is necessary to add coherence and establish a robust scientific exercise. The results obtained in this work, reaffirm the practicality of implementing this Data- Driven frameworks, in both the public and private spheres, being a good starting point for technology transfer. Most of the routines and models provided in this thesis, could be directly applied in Hydro-meteorological Services, or Decision Support Systems for water officials. This includes potential users as varied as public administrations and basin organisations, reservoir managers, energy companies that manage hydroelectric generation, irrigation communities, water bottling plants,... etc. The establishment of iterative and automatic frameworks for data processing and modelling, needs to be implemented, to make the most of the data collected in the water systems.Desde el inicio de los tiempos, se innova en el conocimiento y la tecnología de los sistemas hídricos e hidráulicos con el fin de conseguir una eficiente y correcta gestión de los mismos. En este proyecto, como hipótesis de partida, se van a aplicar diversas técnicas computacionales y conceptos de Inteligencia Artificial. Dado que el principal activo de estas aplicaciones son los datos, optamos por el término ”Data-Driven” (DD), ya que el término de Inteligencia Artificial puede causar confusión en los no expertos. Este es un campo en expansión en todos los aspectos de la ciencia y de la vida, donde al tiempo que se incrementan las capacidades de computación y de procesamiento, se incrementa la generación de datos. Ahí tenemos la tecnología 5G, o el internet de las cosas, donde el incremento exponencial del volumen de datos que se utilizan nos obliga a desarrollar marcos para el tratamiento y el análisis de los mismos. Los métodos DD tienen un enorme potencial para transformar nuestra habilidad de establecer un seguimiento supervisado y predecir estados de variables hidro-meteorológicas. Su aplicación provee claramente de beneficios, sin embargo realizar estos ejercicios requiere una práctica y un conocimiento específico. Por ello, es necesario un entendimiento más profundo de las capacidades y de las limitaciones de estas técnicas computacionales, dentro de nuestro campo de conocimiento y casos específicos. Por estos motivos, es esencial realizar experiencias ”hidro-informáticas” bajo este supuesto, identificando así que puntos son los más relevantes y a tener en cuenta en el desarrollo y la validación de estos modelos en condiciones o marcos más regionales. Para ello, trabajaremos con las series temporales recogidas en las diferentes redes de monitorización, con series resultantes de modelado hidro-meteorológico y con series de las oscilaciones atmosféricas más relevantes en la zona de estudio. El objetivo principal de este trabajo es el desarrollo y la validación de marcos metodológicos basados en datos. Para ello, se seleccionan puntos de interés, con el fin de desarrollar marcos hidro-meteorológicos ´útiles en la gestión y optimización de los recursos hídricos. En este supuesto, nos interesa ver la aplicabilidad práctica de estas herramientas de aprendizaje automático, machine learning, en condiciones mediterráneas y locales, donde los datos a veces son escasos o de baja calidad. En el primer capítulo (Cap.1) se realiza una introducción a la tesis doctoral, estableciendo los objetivos tanto generales como específicos, y la motivación de la tesis. Seguidamente se realiza a modo introductorio una descripción de los tres ejercicios fundamentales a realizar en el trabajo de investigación: Regresión, Clasificación y Optimización. Finalmente, se realiza una revisión del estado del arte de trabajos previos bajo condiciones climáticas mediterráneas y similares. El capítulo 2 presenta las zonas de estudio, analizando las características espacio-temporales de dos cuencas mediterráneas andaluzas situadas en el sureste español: río Guadalhorce (GH) y río Guadalfeo (GF). Son cuencas hidrográficas con unos patrones espaciotemporales altamente variables/heterogéneos. El primer sistema hidrológico, GH, contiene una zona de gran importancia socio-económica como es la ciudad de Málaga. El segundo, GF, al norte tiene situado el Parque Nacional de Sierra Nevada, coronado por el pico Mulhacén y desemboca a pocos kilómetros en la costa de Motril. Esto hace que este sea un sistema con grandes gradientes geo-morfológicos e hidro-meteorológicos. En ambas cuencas existen estructuras de regulación de gran interés para el desarrollo y estudio de su optimización. También se revisan las redes de monitorización disponibles en estas cuencas, y que agentes deben ser tenidos en cuenta para la consecución de los objetivos del presente trabajo. En la etapa de análisis de datos de este capítulo, nos centramos en la evolución espacio temporal del riesgo frente a las inundaciones en las desembocaduras de ambos sistemas hidrológicos al mar de Alborán. Se cuantifica el aumento del riesgo frente a inundaciones ante la intrusión de usos del suelo con altos costes en las zonas potencialmente inundables en estos ´últimos años, constatando así una mala práctica en la planificación del territorio dentro de la zona de estudio. También, en este capítulo se analizan los datos registrados con el fin de comprender la ocurrencia de avenidas en el río GH y su relación con los desembalses aguas arriba. En este análisis se pudo identificar, como ante algunos eventos pluviométricos extremos (> 100mm/24h), esta cuenca tiene limitaciones en la regulación, no pudiendo así mitigar los costes aguas abajo. Parte de los resultados obtenidos formaron parte del trabajo presentado en Egüen et al. (2015). Estos análisis nos permiten identificar la necesidad de una optimización temporal más precisa en la gestión de avenidas en este sistema hidrológico. Finalmente, realizamos un análisis de otro riesgo hidrológico importante como son las sequías, y cómo podemos representar este déficit hídrico mediante índices estandarizados, tanto para la pluviometría como para la escorrentía. En el capítulo 3 se analizan los diversos enfoques y metodologías para el modelado de series temporales hidro-meteorológicas. Los enfoques se exponen de forma antagonista entre las diferentes opciones de modelado que tenemos: caja negra vs. caja gris vs. caja blanca, paramétricos vs. no-paramétricos, estático vs. dinámico, lineal vs. no-lineal, frecuentista vs. bayesiano, único vs múltiple, entre otros..., enumerando las ventajas e inconvenientes de cada enfoque. Algunas ideas surgidas en esta parte de la investigación fueron expuestas en Herrero et al. (2014). Por otro lado, también se discuten los pasos de partición, gestión y transformación de los datos para una correcta aplicación de este tipo de métodos experimentales. Esto es de gran importancia, ya que parte del trabajo duro en la aplicación de este tipo de metodologías, proviene de la transformación de los datos para que los algoritmos y las funciones de transferencia funcionen correctamente. En la parte final de este capítulo, nos centramos en cómo evaluar y validar el comportamiento determinista y probabilístico mediante coeficientes evaluativos. En este punto, prestamos especial atención en evitar la utilización de coeficientes que enmascaren los resultados o muy generalistas, y por lo tanto nos centramos en aquellos que evalúan las capacidades predictivas y de precisión de los modelos. También se ha tenido en cuenta la parsimonia para los modelos basados en redes neuronales, ya que pueden caer fácilmente en una sobre-parametrización. El capítulo 4 expone trabajo puramente experimental, donde se realizan siete regresiones lluvia escorrentía a corto plazo, seis diarias y una horaria. Los casos de estudio corresponden a diversos puntos de interés dentro de las zonas de estudio, con importantes implicaciones en la gestión hidrológica. A escala horaria se analiza las capacidades de eficiencia y predictivas de la Regresión Lineal Múltiple (MLR) y Redes Neuronales Bayesianas (BNN) a diez horizontes temporales para el nivel del río Guadalhorce en el puente de Cártama. Se encontró que, para horizontes predictivos más cercanos, un enfoque más sencillo como puede ser el lineal (MLR), puede superar a uno con mayores capacidades predictivas a priori, como pueden ser uno no lineal (BNN). Simplificando así, el desarrollo y la implementación de este tipo de técnicas computacionales bajo este tipo de marcos hidrológicos. Por otro lado, a escala diaria se establece un marco comparativo entre los dos modelos anteriores, MLR y BNN, y un método bayesiano completo: Procesos Gaussianos (GP). Esta técnica computacional, nos permite aplicar funciones de transferencia de diferente naturaleza bajo un único modelo. Esto es una ventaja con respecto a los otros dos modelos computacionales, ya que los resultados nos indican que a veces funcionan bien en un dominio, pero no funcionan bien en el contrario. Durante la construcción de los modelos, la selección de las variables de entrada se realiza de forma progresiva, mediante un método de prueba y error, donde se tienen en cuenta las mejoras significativas con respecto a la última estructura de predictores preservando el principio de parsimonia. Se han utilizado datos de diferente naturaleza: datos reales recogidos en las redes de monitorización y datos generados paralelamente de modalización hidrológica con base física (WiMMed). Los resultados son robustos donde la principal limitación es el alto coste computacional por el método recurrente e iterativo. Resultados de este capítulo fueron presentados en Gulliver et al. (2014). En el capítulo 5 se realizan tres

    Application of machine learning in operational flood forecasting and mapping

    Get PDF
    Considering the computational effort and expertise required to simulate 2D hydrodynamic models, it is widely understood that it is practically impossible to run these types of models during a real-time flood event. To allow for real-time flood forecasting and mapping, an automated, computationally efficient and robust data driven modelling engine - as an alternative to the traditional 2D hydraulic models - has been proposed. The concept of computationally efficient model relies heavily on replacing time consuming 2D hydrodynamic software packages with a simplified model structure that is fast, reliable and can robustly retains sufficient accuracy for applications in real-time flood forecasting, mapping and sequential updating. This thesis presents a novel data-driven modelling framework that uses rainfall data from meteorological stations to forecast flood inundation maps. The proposed framework takes advantage of the highly efficient machine learning (ML) algorithms and also utilities the state-of-the-art hydraulic models as a system component. The aim of this research has been to develop an integrated system, where a data-driven rainfall-streamflow forecasting model sets up the upstream boundary conditions for the machine learning based classifiers, which then maps out multi-step ahead flood extents during an extreme flood event. To achieve the aim and objectives of this research, firstly, a comprehensive investigation was undertaken to search for a robust ML-based multi-step ahead rainfall-streamflow forecasting model. Three potential models were tested (Support Vector Regression (SVR), Deep Belief Network (DBN) and Wavelet decomposed Artificial Neural Network (WANN)). The analysis revealed that SVR-based models perform most efficiently in forecasting streamflow for shorter lead time. This study also tested the portability of model parameters and performance deterioration rates. Secondly, multiple ML-based models (SVR, Random Forest (RF) and Multi-layer Perceptron (MLP)) were deployed to simulate flood inundation extents. These models were trained and tested for two geomorphologically distinct case study areas. In the first case of study, of the models trained using the outputs from LISFLOOD-FP hydraulic model and upstream flow data for a large rural catchment (Niger Inland Delta, Mali). For the second case of study similar approach was adopted, though 2D Flood Modeller software package was used to generate target data for the machine learning algorithms and to model inundation extent for a semi-urban floodplain (Upton-Upon-Severn, UK). In both cases, machine learning algorithms performed comparatively in simulating seasonal and event based fluvial flooding. Finally, a framework was developed to generate flood extent maps from rainfall data using the knowledge learned from the case studies. The research activity focused on the town of Upton-Upon-Severn and the analysis time frame covers the flooding event of October-November 2000. RF-based models were trained to forecast the upstream boundary conditions, which were systematically fed into MLP-based classifiers. The classifiers detected states (wet/dry) of the randomly selected locations within a floodplain at every time step (e.g. one hour in this study). The forecasted states of the sampled locations were then spatially interpolated using regression kriging method to produce high resolution probabilistic inundation (9m) maps. Results show that the proposed data centric modelling engine can efficiently emulate the outcomes of the hydraulic model with considerably high accuracy, measured in terms of flood arrival time error, and classification accuracy during flood growing, peak, and receding periods. The key feature of the proposed modelling framework is that, it can substantially reduce computational time, i.e. ~14 seconds for generating flood maps for a flood plain of ~4 km2 at 9m spatial resolution (which is significantly low compared to a fully 2D hydrodynamic model run time)

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    Hydro-Ecological Modeling

    Get PDF
    Water is not only an interesting object to be studied on its own, it also is an important component driving almost all ecological processes occurring in our landscapes. Plant growth depends on soil water content, as well is nutrient turnover by microbes. Water shapes the environment by erosion and sedimentation. Species occur or are lost depending on hydrological conditions, and many infectious diseases are water-borne. Modeling the complex interactions of water and ecosystem processes requires the prediction of hydrological fluxes and stages on the one side and the coupling of the ecosystem process model on the other. While much effort has been given to the development of the hydrological model theory in recent decades, we have just begun to explore the difficulties that occur when coupled model applications are being set up

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been in the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The lack of a free-lunch theorem implies the need for a diverse set of forecasting methods to tackle an array of applications. This unique article provides a non-systematic review of the theory and the practice of forecasting. We offer a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts, including operations, economics, finance, energy, environment, and social good. We do not claim that this review is an exhaustive list of methods and applications. The list was compiled based on the expertise and interests of the authors. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of the forecasting theory and practice

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.info:eu-repo/semantics/publishedVersio

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases

    Probabilistic approach of reservoir level depletion induced by drought

    Get PDF
    Droughts are one of the most complicated natural disasters on earth. The repetitive occurrence of droughts has enormous adverse impacts on different aspects of human lives and natural environment. Careful monitoring and early warning systems can assist in the development of effective drought management strategies. Therefore, it is of immense significance to have a full understanding of the characteristics of a developing drought (severity, frequency etc.) before planning any drought response measures. The main aim of this research is to develop a methodology to evaluate reservoir storage levels during drought periods in a probabilistic way. In doing so, a case study was conducted of the Upper Yarra reservoir, which is located in the upper part of the Yarra River catchment in Australia. In order to identify the impacts of drought on this reservoir, it is important to have detailed knowledge of the general drought conditions surrounding this reservoir, as major portions of its inflow are harvested from neighbouring areas. Therefore, a comprehensive investigation of drought characteristics over this area is essential. Six rainfall and six streamflow stations near the Upper Yarra reservoir were selected for evaluating meteorological and hydrological drought events using the Standardized Precipitation Index (SPI) and the Standardized Hydrological Drought Index (SHDI), respectively. Both of these indices detected drought events successfully when applied to the data. Univariate and bivariate frequency analysis of drought duration and severity were carried out using the Gumbel-Hougaard copula. A probabilistic assessment of the reservoir storage condition was carried out by joint consideration of probability of initial storage volume and probability of drought events affecting inflow to the reservoir. Therefore, frequency analysis of drought events of inflow to the reservoir with particular severity and duration were conducted before applying them to the reservoir system model with specific initial water levels. The quantitative exploration of trends of drought characteristics (e.g. severity, frequency) provides meaningful insight to water authorities for developing of drought management plans. This study employed basic and modified Mann-Kendall tests to detect monotonic trends in drought characteristics. Both tests identified significant decreasing trends for four stations in the study area. More specific results of trends were reported by Innovative Trend Analysis (ITA) method. The results indicate that extreme drought situations are more likely to appear at the Reefton, Warburton, Alderman Creek, Little Yarra and McMahons Creek stations. Using the Sequential Mann-Kendall test, it was observed that the starts of the abrupt change points for most stations were found during the Millennium Drought (1996 to 2009) in Victoria. The changing patterns of drought frequencies were also investigated using the Poisson regression method. All stations exhibited decreasing trends in inter-arrival times between successive drought events, indicating that droughts are becoming more frequent in this catchment. The integrated modelling software Source is used to construct a reservoir system model. The development of water demand function is an essential requirement for building of the reservoir system model by Source software. Multiple regression analysis (MRA) and principal component analysis (PCA) are used and, finally, PCA was selected for development of water demand function because PCA gives better results than MRA. This study determines a risk assessment of storage condition of the Upper Yarra reservoir due to impacts of drought events. A probabilistic approach is proposed, taking into account the variability of reservoir storage volume prior to a drought event and different drought scenarios. Both drought severity and durations are included in developing drought scenarios. All required inputs are used in Source software to determine the reservoir storage volume at the end of a drought event. The analysis is performed for Period 3 (June to August, the most critical time of a year in terms of availability of water in the reservoir) and Period 1 (December to February, the least critical time). Three prespecified storage conditions are studied: (1) when storage drops < 50% of its full supply volume (FSV) (CC1); (2) when storage drops < 40% of FSV (CC2); and (3) when storage drops < 30% of FSV (CC3). The main conclusions of these analyses are summarized as follows: 1) the probability of storage reduction below the prespecified conditions is higher in Period 3 than in Period 1; 2) the risk of storage reduction can be successfully evaluated based on two uncertain parameters (initial storage volume and drought severity) and the results show that the initial storage volume is a more dominant uncertain parameter in probability calculation than drought severity for long as well as short-duration droughts; 3) several drought zones are successfully constructed for each condition on plots of initial storage vs. drought severity. It should be noted that each zone is constructed for a specific drought duration and period. If needed, other zones can be developed for other periods and drought durations following the same approach; 4) the constructed zones will give indications to water authorities about the reduction of storage due to long- and short-duration drought events; 5) finally, the general form of the relationship between initial storage volume and probability of storage reduction below any particular level for any drought event of known duration and severity is developed. Results of this study provide a technical reference for the risk assessment of reservoirs due to drought events and will assist in the development of appropriate action plans
    corecore