2,599 research outputs found

    Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems

    Full text link
    Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research in scalable massively parallel multi-core data processing as it was deemed inferior to hash joins. We devise a suite of new massively parallel sort-merge (MPSM) join algorithms that are based on partial partition-based sorting. Contrary to classical sort-merge joins, our MPSM algorithms do not rely on a hard to parallelize final merge step to create one complete sort order. Rather they work on the independently created runs in parallel. This way our MPSM algorithms are NUMA-affine as all the sorting is carried out on local memory partitions. An extensive experimental evaluation on a modern 32-core machine with one TB of main memory proves the competitive performance of MPSM on large main memory databases with billions of objects. It scales (almost) linearly in the number of employed cores and clearly outperforms competing hash join proposals - in particular it outperforms the "cutting-edge" Vectorwise parallel query engine by a factor of four.Comment: VLDB201

    A New Framework for Join Product Skew

    Full text link
    Different types of data skew can result in load imbalance in the context of parallel joins under the shared nothing architecture. We study one important type of skew, join product skew (JPS). A static approach based on frequency classes is proposed which takes for granted the data distribution of join attribute values. It comes from the observation that the join selectivity can be expressed as a sum of products of frequencies of the join attribute values. As a consequence, an appropriate assignment of join sub-tasks, that takes into consideration the magnitude of the frequency products can alleviate the join product skew. Motivated by the aforementioned remark, we propose an algorithm, called Handling Join Product Skew (HJPS), to handle join product skew

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved

    Forecasting the cost of processing multi-join queries via hashing for main-memory databases (Extended version)

    Full text link
    Database management systems (DBMSs) carefully optimize complex multi-join queries to avoid expensive disk I/O. As servers today feature tens or hundreds of gigabytes of RAM, a significant fraction of many analytic databases becomes memory-resident. Even after careful tuning for an in-memory environment, a linear disk I/O model such as the one implemented in PostgreSQL may make query response time predictions that are up to 2X slower than the optimal multi-join query plan over memory-resident data. This paper introduces a memory I/O cost model to identify good evaluation strategies for complex query plans with multiple hash-based equi-joins over memory-resident data. The proposed cost model is carefully validated for accuracy using three different systems, including an Amazon EC2 instance, to control for hardware-specific differences. Prior work in parallel query evaluation has advocated right-deep and bushy trees for multi-join queries due to their greater parallelization and pipelining potential. A surprising finding is that the conventional wisdom from shared-nothing disk-based systems does not directly apply to the modern shared-everything memory hierarchy. As corroborated by our model, the performance gap between the optimal left-deep and right-deep query plan can grow to about 10X as the number of joins in the query increases.Comment: 15 pages, 8 figures, extended version of the paper to appear in SoCC'1

    Adaptive Latency Insensitive Protocols andElastic Circuits with Early Evaluation: A Comparative Analysis

    Get PDF
    AbstractLatency Insensitive Protocols (LIP) and Elastic Circuits (EC) solve the same problem of rendering a design tolerant to additional latencies caused by wires or computational elements. They are performance-limited by a firing semantics that enforces coherency through a lazy evaluation rule: Computation is enabled if all inputs to a block are simultaneously available. Adaptive LIP's (ALIP) and EC with early evaluation (ECEE) increase the performance by relaxing the evaluation rule: Computation is enabled as soon as the subset of inputs needed at a given time is available. Their difference in terms of implementation and behavior in selected cases justifies the need for the comparative analysis reported in this paper. Results have been obtained through simple examples, a single representative case-study already used in the context of both LIP's and EC and through extensive simulations over a suite of benchmarks
    corecore