1,537 research outputs found

    Efficient mining of Fuzzy Association Rules from the Pre-Processed Dataset

    Get PDF
    Association rule mining is an active data mining research area. Recent years have witnessed many efforts on discovering fuzzy associations. The key strength of fuzzy association rule mining is its completeness. This strength, however, comes with a major drawback to handle large datasets. It often produces a huge number of candidate itemsets. The huge number of candidate itemsets makes it ineffective for a data mining system to analyze them. In the end, it produces a huge number of fuzzy associations. This is particularly true for datasets whose attributes are highly correlated. The huge number of fuzzy associations makes it very difficult for a human user to analyze them. Existing research has shown that most of the discovered rules are actually redundant or insignificant. In this paper, we propose a novel technique to overcome these problems; we are preprocessing the data tuples by focusing on similar behaviour attributes and ontology. Finally, the efficiency and advantages of this algorithm have been proved by experimental results

    Improving average ranking precision in user searches for biomedical research datasets

    Full text link
    Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant's best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system's performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system's performance. We believe that our solution could be used to enhance biomedical dataset management systems. In particular, the use of data driven query expansion methods could be an alternative to the complexity of biomedical terminologies

    New Approach for Market Intelligence Using Artificial and Computational Intelligence

    Get PDF
    Small and medium sized retailers are central to the private sector and a vital contributor to economic growth, but often they face enormous challenges in unleashing their full potential. Financial pitfalls, lack of adequate access to markets, and difficulties in exploiting technology have prevented them from achieving optimal productivity. Market Intelligence (MI) is the knowledge extracted from numerous internal and external data sources, aimed at providing a holistic view of the state of the market and influence marketing related decision-making processes in real-time. A related, burgeoning phenomenon and crucial topic in the field of marketing is Artificial Intelligence (AI) that entails fundamental changes to the skillssets marketers require. A vast amount of knowledge is stored in retailers’ point-of-sales databases. The format of this data often makes the knowledge they store hard to access and identify. As a powerful AI technique, Association Rules Mining helps to identify frequently associated patterns stored in large databases to predict customers’ shopping journeys. Consequently, the method has emerged as the key driver of cross-selling and upselling in the retail industry. At the core of this approach is the Market Basket Analysis that captures knowledge from heterogeneous customer shopping patterns and examines the effects of marketing initiatives. Apriori, that enumerates frequent itemsets purchased together (as market baskets), is the central algorithm in the analysis process. Problems occur, as Apriori lacks computational speed and has weaknesses in providing intelligent decision support. With the growth of simultaneous database scans, the computation cost increases and results in dramatically decreasing performance. Moreover, there are shortages in decision support, especially in the methods of finding rarely occurring events and identifying the brand trending popularity before it peaks. As the objective of this research is to find intelligent ways to assist small and medium sized retailers grow with MI strategy, we demonstrate the effects of AI, with algorithms in data preprocessing, market segmentation, and finding market trends. We show with a sales database of a small, local retailer how our Åbo algorithm increases mining performance and intelligence, as well as how it helps to extract valuable marketing insights to assess demand dynamics and product popularity trends. We also show how this results in commercial advantage and tangible return on investment. Additionally, an enhanced normal distribution method assists data pre-processing and helps to explore different types of potential anomalies.Små och medelstora detaljhandlare är centrala aktörer i den privata sektorn och bidrar starkt till den ekonomiska tillväxten, men de möter ofta enorma utmaningar i att uppnå sin fulla potential. Finansiella svårigheter, brist på marknadstillträde och svårigheter att utnyttja teknologi har ofta hindrat dem från att nå optimal produktivitet. Marknadsintelligens (MI) består av kunskap som samlats in från olika interna externa källor av data och som syftar till att erbjuda en helhetssyn av marknadsläget samt möjliggöra beslutsfattande i realtid. Ett relaterat och växande fenomen, samt ett viktigt tema inom marknadsföring är artificiell intelligens (AI) som ställer nya krav på marknadsförarnas färdigheter. Enorma mängder kunskap finns sparade i databaser av transaktioner samlade från detaljhandlarnas försäljningsplatser. Ändå är formatet på dessa data ofta sådant att det inte är lätt att tillgå och utnyttja kunskapen. Som AI-verktyg erbjuder affinitetsanalys en effektiv teknik för att identifiera upprepade mönster som statistiska associationer i data lagrade i stora försäljningsdatabaser. De hittade mönstren kan sedan utnyttjas som regler som förutser kundernas köpbeteende. I detaljhandel har affinitetsanalys blivit en nyckelfaktor bakom kors- och uppförsäljning. Som den centrala metoden i denna process fungerar marknadskorgsanalys som fångar upp kunskap från de heterogena köpbeteendena i data och hjälper till att utreda hur effektiva marknadsföringsplaner är. Apriori, som räknar upp de vanligt förekommande produktkombinationerna som köps tillsammans (marknadskorgen), är den centrala algoritmen i analysprocessen. Trots detta har Apriori brister som algoritm gällande låg beräkningshastighet och svag intelligens. När antalet parallella databassökningar stiger, ökar också beräkningskostnaden, vilket har negativa effekter på prestanda. Dessutom finns det brister i beslutstödet, speciellt gällande metoder att hitta sällan förekommande produktkombinationer, och i att identifiera ökande popularitet av varumärken från trenddata och utnyttja det innan det når sin höjdpunkt. Eftersom målet för denna forskning är att hjälpa små och medelstora detaljhandlare att växa med hjälp av MI-strategier, demonstreras effekter av AI med hjälp av algoritmer i förberedelsen av data, marknadssegmentering och trendanalys. Med hjälp av försäljningsdata från en liten, lokal detaljhandlare visar vi hur Åbo-algoritmen ökar prestanda och intelligens i datautvinningsprocessen och hjälper till att avslöja värdefulla insikter för marknadsföring, framför allt gällande dynamiken i efterfrågan och trender i populariteten av produkterna. Ytterligare visas hur detta resulterar i kommersiella fördelar och konkret avkastning på investering. Dessutom hjälper den utvidgade normalfördelningsmetoden i förberedelsen av data och med att hitta olika slags anomalier

    ZigBee Pulse Oximeter

    Get PDF
    This work presents a prototype to adapt a standard pulse oximeter by turning it into a wireless device using ZigBee. Patient’s data are extracted and transmitted to the server in real time through a Wireless Sensor Network. This Wireless Sensor Network is deployed using the mesh topology in order to reach the maximum reliability in the communications. The pulse oximeter is based on a Nellcor DS-100a probe and is controlled by an Arduino FIO with a XBee wireless modem. The amplifier circuit which is designed to extract the information of the pulse oximeter probe is included in this work

    Proceedings of the first international VLDB workshop on Management of Uncertain Data

    Get PDF

    Predicting recurring concepts on data-streams by me ans of a meta-model and a fuzzy similarity function

    Get PDF
    Meta-models can be used in the process of enhancing the drift detection mechanisms used by data stream algorithms, by representing and predicting when the change will occur. There are some real-world situations where a concept reappears, as in the case of intrusion detection systems(IDS), where the same incidents or an adaptation of them usually reappear over time. In these environments the early prediction of drift by means of a better knowledge of past models can help to anticipate to the change, thus improving efficiency of the model regarding the training instances needed. In this paper we present MM-PRec, a meta-model for predicting recurring concepts on data-streams which main goal is to predict when the drift is going to occur together with the best model to be used in case of a recurring concept. To fulfill this goal, MM-PRec trains a Hidden Markov Model (HMM) from the instances that appear during the concept drift. The learning process of the base classification learner feeds the meta-model with all the information needed to predict recurrent or similar situations. Thus, the models predicted together with the associated contextual information are stored. In our approach we also propose to use a fuzzy similarity function to decide which is the best model to represent a particular context when drift is detected. The experiments performed show that MM-PRec outperforms the behaviour of other context-aware algorithms in terms of training instances needed, specially in environments characterized by the presence of gradual drifts

    Structural advances for pattern discovery in multi-relational databases

    Get PDF
    With ever-growing storage needs and drift towards very large relational storage settings, multi-relational data mining has become a prominent and pertinent field for discovering unique and interesting relational patterns. As a consequence, a whole suite of multi-relational data mining techniques is being developed. These techniques may either be extensions to the already existing single-table mining techniques or may be developed from scratch. For the traditionalists, single-table mining algorithms can be used to work on multi-relational settings by making inelegant and time consuming joins of all target relations. However, complex relational patterns cannot be expressed in a single-table format and thus, cannot be discovered. This work presents a new multi-relational frequent pattern mining algorithm termed Multi-Relational Frequent Pattern Growth (MRFP Growth). MRFP Growth is capable of mining multiple relations, linked with referential integrity, for frequent patterns that satisfy a user specified support threshold. Empirical results on MRFP Growth performance and its comparison with the state-of-the-art multirelational data mining algorithms like WARMR and Decentralized Apriori are discussed at length. MRFP Growth scores over the latter two techniques in number of patterns generated and speed. The realm of multi-relational clustering is also explored in this thesis. A multi-Relational Item Clustering approach based on Hypergraphs (RICH) is proposed. Experimentally RICH combined with MRFP Growth proves to be a competitive approach for clustering multi-relational data. The performance and iii quality of clusters generated by RICH are compared with other clustering algorithms. Finally, the thesis demonstrates the applied utility of the theoretical implications of the above mentioned algorithms in an application framework for auto-annotation of images in an image database. The system is called CoMMA which stands for Combining Multi-relational Multimedia for Associations

    Improving intrusion detection systems using data mining techniques

    Get PDF
    Recent surveys and studies have shown that cyber-attacks have caused a lot of damage to organisations, governments, and individuals around the world. Although developments are constantly occurring in the computer security field, cyber-attacks still cause damage as they are developed and evolved by hackers. This research looked at some industrial challenges in the intrusion detection area. The research identified two main challenges; the first one is that signature-based intrusion detection systems such as SNORT lack the capability of detecting attacks with new signatures without human intervention. The other challenge is related to multi-stage attack detection, it has been found that signature-based is not efficient in this area. The novelty in this research is presented through developing methodologies tackling the mentioned challenges. The first challenge was handled by developing a multi-layer classification methodology. The first layer is based on decision tree, while the second layer is a hybrid module that uses two data mining techniques; neural network, and fuzzy logic. The second layer will try to detect new attacks in case the first one fails to detect. This system detects attacks with new signatures, and then updates the SNORT signature holder automatically, without any human intervention. The obtained results have shown that a high detection rate has been obtained with attacks having new signatures. However, it has been found that the false positive rate needs to be lowered. The second challenge was approached by evaluating IP information using fuzzy logic. This approach looks at the identity of participants in the traffic, rather than the sequence and contents of the traffic. The results have shown that this approach can help in predicting attacks at very early stages in some scenarios. However, it has been found that combining this approach with a different approach that looks at the sequence and contents of the traffic, such as event- correlation, will achieve a better performance than each approach individually
    corecore