188 research outputs found

    Improving Image Reconstruction for Digital Breast Tomosynthesis

    Full text link
    Digital breast tomosynthesis (DBT) has been developed to reduce the issue of overlapping tissue in conventional 2-D mammography for breast cancer screening and diagnosis. In the DBT procedure, the patient’s breast is compressed with a paddle and a sequence of x-ray projections is taken within a small angular range. Tomographic reconstruction algorithms are then applied to these projections, generating tomosynthesized image slices of the breast, such that radiologists can read the breast slice by slice. Studies have shown that DBT can reduce both false-negative diagnoses of breast cancer and false-positive recalls compared to mammography alone. This dissertation focuses on improving image quality for DBT reconstruction. Chapter I briefly introduces the concept of DBT and the inspiration of my study. Chapter II covers the background of my research including the concept of image reconstruction, the geometry of our experimental DBT system and figures of merit for image quality. Chapter III introduces our study of the segmented separable footprint (SG) projector. By taking into account the finite size of detector element, the SG projector improves the accuracy of forward projections in iterative image reconstruction. Due to the more efficient access to memory, the SG projector is also faster than the traditional ray-tracing (RT) projector. We applied the SG projector to regular and subpixel reconstructions and demonstrated its effectiveness. Chapter IV introduces a new DBT reconstruction method with detector blur and correlated noise modeling, called the SQS-DBCN algorithm. The SQS-DBCN algorithm is able to significantly enhance microcalcifications (MC) in DBT while preserving the appearance of the soft tissue and mass margin. Comparisons between the SQS-DBCN algorithm and several modified versions of the SQS-DBCN algorithm indicate the importance of modeling different components of the system physics at the same time. Chapter V investigates truncated projection artifact (TPA) removal algorithms. Among the three algorithms we proposed, the pre-reconstruction-based projection view (PV) extrapolation method provides the best performance. Possible improvements of the other two TPA removal algorithms have been discussed. Chapter VI of this dissertation examines the effect of source blur on DBT reconstruction. Our analytical calculation demonstrates that the point spread function (PSF) of source blur is highly shift-variant. We used CatSim to simulate digital phantoms. Analysis on the reconstructed images demonstrates that a typical finite-sized focal spot (~ 0.3 mm) will not affect the image quality if the x-ray tube is stationary during the data acquisition. For DBT systems with continuous-motion data acquisition, the motion of the x-ray tube is the main cause of the effective source blur and will cause loss in the contrast of objects. Therefore modeling the source blur for these DBT systems could potentially improve the reconstructed image quality. The final chapter of this dissertation discusses a few future studies that are inspired by my PhD research.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144059/1/jiabei_1.pd

    Virtual clinical trials in medical imaging: a review

    Get PDF
    The accelerating complexity and variety of medical imaging devices and methods have outpaced the ability to evaluate and optimize their design and clinical use. This is a significant and increasing challenge for both scientific investigations and clinical applications. Evaluations would ideally be done using clinical imaging trials. These experiments, however, are often not practical due to ethical limitations, expense, time requirements, or lack of ground truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually. They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has been constantly advanced over the past decades in multiple areas. We summarize the major developments and current status of the field of VCTs in medical imaging. We review the core components of a VCT: computational phantoms, simulators of different imaging modalities, and interpretation models. We also highlight some of the applications of VCTs across various imaging modalities

    System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging

    Get PDF
    In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the disadvantages of the conventional approach that was extremely sensitive to noise corruption. In the final part, we described the modified filtered backprojection and iterative image reconstruction algorithms specifically developed for TBCT. Special parallelization strategies are designed to facilitate the use of GPU computing, showing demonstrated capability of producing high quality reconstructed volumetric images with a super fast computational speed. For all the investigations mentioned above, both simulation and experimental studies have been conducted to demonstrate the feasibility and effectiveness of the proposed methodologies

    Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135115/1/mp3283.pd

    Comparison of different image reconstruction algorithms for Digital Breast Tomosynthesis and assessment of their potential to reduce radiation dose

    Get PDF
    Tese de mestrado, Engenharia Física, 2022, Universidade de Lisboa, Faculdade de CiênciasDigital Breast Tomosynthesis is a three-dimensional medical imaging technique that allows the view of sectional parts of the breast. Obtaining multiple slices of the breast constitutes an advantage in contrast to conventional mammography examination in view of the increased potential in breast cancer detectability. Conventional mammography, despite being a screening success, has undesirable specificity, sensitivity, and high recall rates owing to the overlapping of tissues. Although this new technique promises better diagnostic results, the acquisition methods and image reconstruction algorithms are still under research. Several articles suggest the use of analytic algorithms. However, more recent articles highlight the iterative algorithm’s potential for increasing image quality when compared to the former. The scope of this dissertation was to test the hypothesis of achieving higher quality images using iterative algorithms acquired with lower doses than those using analytic algorithms. In a first stage, the open-source Tomographic Iterative GPU-based Reconstruction (TIGRE) Toolbox for fast and accurate 3D x-ray image reconstruction was used to reconstruct the images acquired using an acrylic phantom. The algorithms used from the toolbox were the Feldkamp, Davis, and Kress, the Simultaneous Algebraic Reconstruction Technique, and the Maximum Likelihood Expectation Maximization algorithm. In a second and final state, the possibility of further reducing the radiation dose using image postprocessing tools was evaluated. A Total Variation Minimization filter was applied to the images reconstructed with the TIGRE toolbox algorithm that provided the best image quality. These were then compared to the images of the commercial unit used for the image acquisitions. With the use of image quality parameters, it was found that the Maximum Likelihood Expectation Maximization algorithm performance was the best of the three for lower radiation doses, especially with the filter. In sum, the result showed the potential of the algorithm in obtaining images with quality for low doses

    Modeling the Anisotropic Resolution and Noise Properties of Digital Breast Tomosynthesis

    Get PDF
    Digital breast tomosynthesis (DBT) is a 3D imaging modality in which a reconstruction of the breast is generated from various x-ray projections. Due to the newness of this technology, the development of an analytical model of image quality has been on-going. In this thesis, a more complete model is developed by addressing the limitations found in the previous linear systems (LS) model [Zhao, Med. Phys. 2008, 35(12): 5219-32]. A central assumption of the LS model is that the angle of x-ray incidence is approximately normal to the detector in each projection. To model the effect of oblique x-ray incidence, this thesis generalizes Swank\u27s calculations of the transfer functions of x-ray fluorescent screens to arbitrary incident angles. In the LS model, it is also assumed that the pixelation in the reconstruction grid is the same as the detector; hence, the highest frequency that can be resolved is the detector alias frequency. This thesis considers reconstruction grids with smaller pixelation to investigate super-resolution, or visibility of higher frequencies. A sine plate is introduced as a conceptual test object to analyze super-resolution. By orienting the long axis of the sine plate at various angles, the feasibility of oblique reconstruction planes is also investigated. This formulation differs from the LS model in which reconstruction planes are parallel to the breast support. It is shown that the transfer functions for arbitrary angles of x-ray incidence can be modeled in closed form. The high frequency modulation transfer function (MTF) and detective quantum efficiency (DQE) are degraded due to oblique x-ray incidence. In addition, using the sine plate, it is demonstrated that a reconstruction can resolve frequencies exceeding the detector alias frequency. Experimental images of bar patterns verified the existence of super-resolution. Anecdotal clinical examples showed that super-resolution improves the visibility of microcalcifications. The feasibility of oblique reconstructions was established theoretically with the sine plate and was validated experimentally with bar patterns. This thesis develops a more complete model of image quality in DBT by addressing the limitations of the LS model. In future studies, this model can be used as a tool for optimizing DBT
    corecore