263 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    The Impact on Full Duplex D2D Communication of Different LTE Transmission Techniques

    Full text link
    © 2017 IEEE. To augment capacity of spectrum limited cellular systems, 3GPP proposed Licensed Assisted Access (LAA-LTE) while efforts are underway to standardize the standalone MulteFire (a small cell standalone version of LTE). LAA is expected to boost capacity of LTE via unlicensed spectrum (5GHz). On the other hand, recent advances in Self Interference Suppression (SIS) techniques allow radios to transmit and receive simultaneously on the same channel (i.e., in-band Full-Duplex, FD). As part of future wireless networks, Device-to-device (D2D) communications would find its great potential through this FD capability. However, due to high induced aggregate interference from FD and its impact on medium access probability, the rigorous and critical analysis is needed to find an optimum trade-off between performance efficiency and overheads. Using stochastic geometry and the random graph theory, in this article, we analyze the impact of different LTE network paradigms with HD/FD D2D devices. Moreover, the impact of state- of-the-art coexistence techniques (discontinuous transmission and listen-before-talk) recommended for LTE in unlicensed spectrum over HD/FD D2D network is also discussed. The analysis is supported with extensive simulation results that reveal insights of the coexistence mechanism efficiency employed by LTE, the impact of SIS and the cost of FD operation in D2D
    • …
    corecore